ON DERIVED TAME ALGEBRAS

RAYMUNDO BAUTISTA

ABSTRACT. Let A be a finite-dimensional algebra over an algebraically closed
field k. We prove that DP(A) the bounded derived category has tame repre-
sentation type (A is called tame derived ), if and only if the full subcategory
of DP(A) whose objects are perfect complexes is of tame representation type.
We see that if A is derived tame then, almost all isomorphism classes of inde-
composable complexes X*® € Db(A) with fixed homology dimension are perfect
and have Auslander-Reiten triangles of the form: X® — H® — X°® — X*[1].

1. INTRODUCTION

Let A be a finite-dimensional algebra over an algebraically closed field k& and
Db(A) be its bounded derived category. We consider Mod A the category of left
A-modules. We denote by mod A, Proj A, proj A, InjA and inj A the full subcate-
gories of Mod A consisting of the finitely generated, the projectives, the finitely gen-
erated projectives, the injectives and the finitely generated injectives A-modules,
respectively. By D°(Mod A) we denote the bounded derived category of Mod A,
we recall that D?(A) is the bounded derived category of the category mod A. If
X = (X%, d%)icz is an object in DP(A) an invariant of it is given by its homology
dimension hdim = (h;);ez with h; = dim; H*(X).

A sequence of non negative integers h = (h;);¢cz is called a homology dimension
if for all but finitely many i, h; = 0. We recall that according with [18], D’(A)
is called discrete and A derived discrete if there are only finitely many isoclasses
of indecomposables X € D’(A) with fixed homology dimension. As for algebras,
definitions of tame representation type and of wild representation type has been
given in [12] for the category D’(A). The algebra A is called derived tame or derived
wild if the category D(A) is of tame representation type or of wild representation
type, respectively.

In [18] it has been proved that A is derived discrete if and only if D°(A),,, the
full subcategory of D?(A) whose objects are the perfect complexes is discrete. We
prove that a similar fact is also true for the tame case: A is derived tame if and only
if Db(A)pT ¢ is of tame representation type. In fact we prove that almost all isomor-
phism classes of indecomposable objects in D?(A) of given homology dimension are
isomorphism classes of perfect objects.

Moreover we see that if A is derived tame and h is a fixed homology dimension,
then for almost all isomorphism classes [Y] with Y indecomposable perfect complex
with hdimY = h, there is an Auslander-Reiten triangle of the form:

Y—-H-Y ->Y[-1].
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In addition, if h = (h;), Y = (Y",d}) and ng is the integer such that h,, #
0 and h; = 0 for i < ng, then ¥Y; = 0 for j < np — 1 and d;}"_l syl
Y™ is a monomorphism. This implies that for A derived tame for any fixed non-
negative integer, almost all isomorphism classes of indecomposable A-modules [M]
with dimg M < d, the projective dimension of M is equal to one.

For the proof of the above results, we consider in section 2, Cp,(proj A) which is
the category of complexes X = (X, d% ) of finitely generated projective A-modules
with X% = 0 for i outside the interval [1,...,m]. We denote by CL (projA) the full
subcategory of Cu(projA) whose objects are the complexes X = (X* d¥ ) such
that Tmdy ' C rad X" for all i € Z.

In general if C is a k-category a morphism f : M — N in C is called radical if
for any split monomorphism o : X — M and any split epimorphism 7 : M — Y,
wfo: X — Y is not isomorphism. If P and @ are projective A-modules, f: P — Q
is a radical morphism if and only if Imf C rad@.

In section 6 we prove the following two results.

Theorem 1.1. For fized m, either Cy(projA) is of tame representation type or
of wild representation type.

The proof of this last result is in fact considered in [5] and [10], using bocses
with relations. We present a different proof using just free triangular bocses. We
recall from [2] that we have an exact category (Cm(projA), &) in the sense of [17]
or [11], where £ is the class of sequences of morphisms (conflations)

X5ESY
such that for all ¢ € Z the sequence
0 X S E 2y,
is an split exact sequence. The exact category (Cp(projA),E) has enough projec-
tives and injectives and it has almost split sequences.

Theorem 1.2. Suppose Cp,(projA) is of tame representation type. Then for al-
most all isomorphism classes [X] of indecomposables with a fized dimension d =
dimp X = Y, dim X" in the category Cm(projA), there is an E-almost split se-
quence in Cpy(projA) of the form: X — E — X.

For this we use in a similar way as in [5] tbocses (introduced in [1]).

In section 7 we consider generic complexes in D?(Mod A) in the sense of section
5 of [16], observe that this definition differs of the one given in [12]. With our
definition we obtain similar results to the ones given in [8] for A-modules. In
particular each generic complex is closely related to an one-parameter family of
objects in DY(A). In addition we prove that if X is a generic complex for a derived
tame algebra A, X is isomorphic in D?(Mod A) to a bounded complex of projective
A-modules.

2. BOUNDED DERIVED CATEGORIES

Here we see some consequences of Theorems 1.1 and 1.2 for the derived category
DP(A).

In the following a rational algebra is a k-algebra of the form:
klz]n = {f/h™|m is a positive integer, f € k[z]}, the support of a rational algebra
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is defined by S(k[z]n) = {\ € k|h(N\) # 0}. For A € S(k[z]n), the simple k[z]p-
module k[z]/(z — X) will be denoted by Sy.

For h a homology dimension we denote by V(h) the full subcategory of D’(A)
whose objects are indecomposables X € D¥(A) with hdimX = h.

We recall the following definitions:

1) A is called derived discrete if for each homology dimension h, the category
V(h) has only finitely many isomorphism classes.

2) A is called derived tame if for each homology dimension h there is a finite set of
rational algebras R,,u =1, ..., s and for each v a bounded complex M, of A — R,-
bimodules free finitely generated over R,, such that for almost all isomorphism
classes [X] with X € V(h) there is a A € S(R,) with X & M, ®g, S for some
ue{l,..,s}

3) A is called derived wild if there is a bounded complex W of A — k < z,y >-
bimodules free finitely generated over k < z,y > such that the functor

W ®p<zys> — :modk < x,y >— D°(A)

preserves isoclasses and indecomposables.

Concerning the categories Cy,(projA) we recall the definitions of finite repre-
sentation type, tame representation type and wild representation type.

4) Cpu(proj A) is called of finite representation type if it has only a finite number
of isomorphism classes of indecomposables.

5) Cm(projA) is called of tame representation type if for any given positive
integer d there are rational algebras R,,u = 1,...,s and for each u a complex
M, = (M}, d}, ) with M a A — R,-bimodule free finitely generated over R,,
projective as A-module and M} = 0 for i outside the interval [1, ..., m], such that
for almost all isomorphism class [Y] with Y indecomposable and dim;Y < d there
isa A € S(R,) such that M, ®p, Sx =Y.

6) Cm(projA) is called of wild representation type if there is a bounded complex
of A — k < x,y >-bimodules free finitely generated over k < z,y >, projectives as
A-modules, W = (W', di;,) with W' = 0 for i outside the interval [1,...,m], such
that the functor:

W ®pg, —:modk < z,y >— Cp(projA)

preserves isoclasses and indecomposables.

We need the following results.

Lemma 2.1. Suppose Y = (Y, di) € CL (projA) is such that dim,H’(Y*) < c
for all j and for some u € [2,...,m], dim;Y" < d,, then dim;Y* ! < (d, + ¢)L,
with L = dimgA.

Proof. We have dimY“~1/ Kerd';-_1 = dimkImdi}_l < d,, moreover we know
that dimjKerd% ' /Imd% ? < ¢. Therefore dimY ! /Imd% ™2 < ¢ + d,,.

Here Tmd¥™? C radY*~!, thus dimz Y% ™! /radY"~! < dim; Y~ /Imd} 2. Con-
sequently, dimY*~ 1 < (¢ +d,)L. O

Lemma 2.2. Let Y* = (Y% di,) € CL (projA) such that for all j, we have the
inequality dimy H? (Y'*) < ¢ for some fized c. Then

dimiY < e(mL + (m —1)L? + (m — 2)L3 + ...+ 2L 4 L™).



4 RAYMUNDO BAUTISTA

Proof. Here Y™*! = 0, then by our previous lemma, dim;Y™ < cL. Then
again by lemma 2.1 we have, dim Y™~ ! < ¢(L+ L?), dim, Y™ 2 < ¢(L+ L? + L?),
ey dimp Yt < (L + L% + ... + L™). From here we obtain our result. O

We denote by C<™P(ProjA) the category of complexes X = (X' d%) with
X% € ProjA and X? = 0 for i > m, such that H*(X) = 0 for almost all i. By
K=™P(Proj A) we denote the corresponding homotopy category.

Following [2] we denote by L,, the full subcategory of K<™P(ProjA) whose
object are those X with H*(X) =0 for i < 1.

The functor F : KS™P(ProjA) — Cy,(Proj A) which sends a complex:

X xS x0f il L xmog
to
F(X):...O—>O—>X1d—1>...—>Xm—>0,
induces an equivalence:
F: L, — Cn(ProjA),
where C,,(Proj A) is the category with the same objects as Cp, (Proj A) and mor-
phisms those in Cy,(ProjA) modulo the ones which are factorized through &-

injective objects ( see Corollary 5.7 of [2]).
Moreover we have an embedding

21 L, — DP(Mod A).

Observe that for P € L,,, ¢ : P — 72'P the natural morphism is a quasi-
isomorphism.

For a natural number d we denote by F,; the full subcategory of Cu,(projA)
whose objects are those indecomposables X with dim; X < d. We denote by U, the
full subcategory of L,, whose objects are those Y = F(P) with P € Fy. By V; we
denote the full subcategory of D’(A) whose objects are those isomorphic to some
721 P with P € U,.

We have V(h) C Vg, if d = |[h|(mL + (m — 1)L? + ... + 2L™" 1 + L™) with
|h| = max{h;}icz, L = dimgA.

Theorem 2.3. a) A is derived discrete if and only if for all m, Cpm(projA) is of
finite representation type;

b) if A is derived wild it is not derived tame;

¢) if for some m, Cy(proj A) is of wild representation type then A is derived wild;
d) A is derived tame if and only if for all m, Cy,(projA), is of tame representation
type;

e) A is either derived tame or derived wild (see Bekkert-Drozd [5]).

Proof. Suppose A is derived discrete, then by [18] A is derived hereditary of
Dynkin type or it is a gentle algebra.

For a Krull-Schmidt category C we denote by indC the full subcategory of C
whose objects are the indecomposables of C.

If A is hereditary then Ca(projA) is of finite representation type, for m > 2 we
have:

ind Gy (proj A) C ind Ca(proj A) U ind Ca(proj A)[1] U ... Uind Ca(proj A)[m — 1]

then ind Cpy, (proj A) has only finitely many isomorphism classes, thus it is of finite
representation type.
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If A is derived equivalent to a hereditary algebra A of Dynkin type, there is a
bounded complex T over A — A-bimodules projective finitely generated over both
sides such that the functor:

— LT :DY(A) — DY (A)
is an equivalence. Then for m there is a n and a [ such that we have a functor:
G(=) = -5 T[l] : Cn(projA) — Cuin(proj A)

with the following property: if Y and X are indecomposables in Cyy,(proj A) which
are not &-injectives or £-projectives then their images under G are also indecom-
posables and G(Y) = G(X) imply ¥ = X. Here Cpmin(proj A) is of finite repre-
sentation type, then also Cp,(projA) is of finite representation type.

Now suppose that A is a gentle algebra k(Q,I). Then from the description of
the objects in K~ P(proj A) in [6] one can see that if there are generalized strings
in @ of arbitrary size corresponding to complexes in Cy,(proj A) for some fixed m,
then there are generalized bands, but this implies that A is not derived discrete,
therefore for any m, Cp,(proj A) is of finite representation type.

Conversely assume Cyy,(projA) is of finite representation type for all m.

Take h = (h;) a homology dimension, we may assume h; = 0 for i outside the
interval [2,..,m]. Take d = |h|(mL+ (m—1)L?+...4-2L™~ 1+ L™), then by Lemma
2.2, V(h) C V. The categories V,, U; and Fy are equivalent, by assumption Fy
has only a finite number of isoclasses, the same is true for V(h). Therefore A is
derived discrete.

The part b) is proved in Theorem 5.2 of [12].

¢) Suppose that Cp,(projA) is of wild representation type. Then there is a
bounded complex W = (W, di;;) of A — k < z,y >-bimodules free finiteley gen-
erated over the right side, projectives as A-modules, with W? = 0 for i outside
the interval [1,...,m] and Imdi;," C radAW?, such that the functor W @<y > — :
mod k < z,y >— Cp(proj A) preserves iso-classes and indecomposables. The com-
position of this functor with the composition Cp, (proj A) — K~ P(proj A) — D’(A)
also preserves iso-classes and indecomposables, consequently A is derived wild.

d) Suppose A is derived tame, then if for some m, Cy,(projA) is of wild repre-
sentation type then by c), A is derived wild, which contradicts b). Therefore for
all m, Cpy(proj A) is not of wild representation type, but this implies, by Theorem
1.1 that for all m, Cy(projA) is of tame representation type.

Conversely assume that for all m, Cy, (proj A) is of tame representation type. Let
h be a fixed homology dimension, take d = |h|(mL+ (m —1)L?+ ...+ 2L™ 1+ L™)
then V(h) C V;. Therefore there are rational algebras R, u = 1, ..., s and for each
u a bounded complex M, = (M, dy, ) over the A — R,-bimodules free finitely
generated over the right side with M? = 0 for i outside the interval [1,...,m] such
that for almost all isomorphism class [X] in Fy there is a uw and A € S(R,) with
X =M, R, SA-

We may assume that for all « and 1, Imalij\}u1 and Kerdfwu are direct summands
of M} as right R,-modules.

Then for each u, W,, = 721 M,, is a bounded complex over the A — R,,-bimodules
which is free finitely generated over the right side.

Take Y € V(h), then there is a P € Uy with a quasi-isomorphism ¢ : P — Y, we
have 72'P =Y in D°(A).
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Clearly 72'P = r2'F(P), F(P) € F,. Therefore F(P) = M, ®g, Sy for some
u and some A € S(R,). Thus

Y 2 7r2'p =72 F(P) 2 121 (M, ®g, S») 2721 (M,) ®g, Sy = W, ®g, Sh.

consequently A is derived tame.

e) Suppose A is not derived wild, then by c) for all m, Cy,(proj A) is not of wild
representation type, by Theorem 1.1, for all m, Cy, (proj A) is of tame representation
type. Therefore by d), A is derived tame. O

Theorem 2.4. Let A be a derived tame algebra and h = (h;) be a fized homology
dimension such that for ng, hn, 7 0 and h; = 0 for ¢ < ng. Then for almost all
isomorphism class of indecomposable objects X € DP(A) with hdimX = h, X is a
perfect object and there is an Auslander-Reiten triangle of the form:

X —H— X — X]1].

Moreover if X = (X', d) then X; =0 fori <ng—1 and d2~": X"~ — X" js
a monomorphism.

Proof. After a shifting we may assume h; = 0 for i« < 1 and ¢ > n, hy # 0.
By U(h) we denote the full subcategory of K="P(proj A) whose objects are quasi-
isomorphic to complexes X € V(h). The categories ¢ (h) and V(h) are equivalent.
We will see that for almost all isomorphism classes of objects P in U(h), P is a
finite complex. If P € U(h) then hdimP = h, thus dimy H'(P) = hy = 0, therefore
Uh) C L,.

Recall that we have an equivalence F : £,, — Cp(proj A).

Denote by F(h) the full subcategory of Cy,(proj A) whose objects are isomorphic
to some F(P) with P € U(h). The categories U(h) and F(h) are equivalent
categories. By Lemma 2.2, F(h) C F, for d = |h|(nL+ (n—1)L? +..2L" "1 + L™).

For our purposes it is convenient consider F(h)[—1] as a full subcategory of
Cm(projA) withm =n+3. If Y = (Y%, d%);cz € F(h)[—1], then Y1 =0,Y"+2 =
0,Y"+3 = 0 and dimg,Y < d.

By d) of Theorem 2.1 Cp,(projA) is of tame representation type. Then by
Theorem 1.2 for almost all isomorphism class [Y] with Y € C,,(proj A) there is an
almost split conflation

Y—-E—-Y
in Cy(projA).

Following the notation of [2] we recall that A(Y) = Y. In order to calculate
A(Y) we take Z = (Z',dy)icz = v(Y)[—1] and a quasi-isomorphism ¢ : Q =
Q1 diQ)iGZ — 757 with Q € C5™P(projA). Then A(Y) = F(Q). Moreover by
[14] there is an Auslander-Reiten triangle in D°(A):

Z—-G—=Y —Z[1].

We have Z™ = Z"+3 = y(Y"*+2) = 0, therefore 7="Z = Z.

Here Z is indecomposable, then @ is an indecomposable complex in the cate-
gory K=™:P(proj A), we may choose @) an indecomposable object in the category
C<™P(proj A) with Q™ = 0, here Z™ = 0.

We have F(Q) = A(Y) 2 Y in Cp(projA), thus, Q' = Y! = 0. Here Q is
indecomposable, this implies that Q* = 0 for i < 1. Moreover Z2 = v(Y'!) = 0, then
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H?*(Q) = H*(Z) = 0. Therefore the morphism d, : @* — @Q* is a monomorphism
and Q2 Y, and Z = Q=Y in D°(A).
Thus we have an Auslander-Reiten triangle in D(A):

Now Y[1] € F(h) then Y[1] & F(P) with P € U(h). Therefore P! = Y? =
Q?, P2 =2 Y3 = Q3. The morphism dé : Q% — @3 is isomorphic to the morphism
dbL : P! — P? thus this last morphism is a monomorphism.

Here hy = dimy(Kerd)h/Imd%) = 0, then Imd% = Kerd}) = 0, consequently
d}% = 0. But P is indecomposable, therefore P* = 0 for i < 0. Consequently
P = F(P) 2 Y[—1]. Thus applying the equivalence [—1] to () we obtain our
result. (]

Corollary 2.5. Suppose A is selfinjective, then either it is derived discrete or
derived wild.

Proof. Suppose A is neither derived discrete nor derived wild. Then there
are infinitely many isomorphism classes in V(h) for some homology dimension h.
Therefore there is an indecomposable X in DY(A) with an Auslander-triangle of
the foom X — H — X — X[1] with X = (X* d%) indecomposable object in
CL (projA) and d} : X! — X? is a monomorphism, since X! is injective, this is
not possible. O

Corollary 2.6. Let A be derived tame, then for a fixed homology dimension h,
for almost all isomorphism classes [X] with X € D*(A) a finite complex of finitely
generated projectives and hdimipX = h, X is isomorphic to a finite complex of
finitely generated injectives.

Remark. Observe that gentle algebras are Gorenstein and in this case all finite
complexes of finitely generated projectives are also isomorphic to finite complexes
of finitely generated injectives (see [13]).

Corollary 2.7. Let A be a derived tame algebra. Suppose P is a bounded complex
of A — R-bimodules projectives over A and free finitely generated over R, a rational
algebra, such that for all A € S(R), P ®g Sy is indecomposable in D°(A), and for
A#p € S(R), PRr Sy 2 P®g S, in D°(A). Then if hdimy,)P ®g k(z) = h =
(h;) is such that hy,y # 0 and h; = 0 for j < ng, we obtain that the morphism
A ' ®@1: P ' @gk(z) — P™ ®p k(z) is a monomorphism .

Proof We may assume that for all A € S(R), all Kerd® are direct summands of
P! as right R-modules. Thus hdimP ®z Sy = h for all A € S(R). By Theorem
2.2, we may also assume that for all A € S(R), P ® Sy = 0 for i < ng — 1 and
Ker(d=t®1: P! ® S, — P" ®S)) = 0. But this implies our assertion. [J

Corollary 2.8. Suppose A is a derived tame algebra and d a fixed non-negative
integer, then almost all isomorphism classes of indecomposable A-modules M with
dimp M = d have projective dimension one.
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Proof. For M indecomposable with dimyM = d, take
—3dy oo dy o1 dy 5o 7w
=Py = Py = Py = Py —M—0

a minimal projective resolution of M. Consider Py; = (PJJ\'/I7 dg\/[) with PJJ\;[ =0, for
§>0and d), =0 for j > 0. Then for hdimM = (h;), we have hg = d, h; = 0 for
j < 0. Then by Theorem 2.4 for almost all isomorphism classes [M], P]{[ = 0 for
j < —1. This proves our claim. O

3. BOCSES

A tbocs is a triple A = (R, W,¢), where R is a k-algebra (k is a field ), W is
a R-bimodule such that W = Wy & W7 as R bimodules. The elements of W; are
called homogeneous of degree i, i € {0,1}. For w € W;, we put deg(w) = i.

Take now Tr(W) the tensor algebra:

RoWaw® o..

with the graduation induced by the one of W. The R-module generated by the set
of homogeneous elements in Tr(W) of degree ¢ will be denoted by Tr(W);. Then
0 is a endomorphism of R-bimodules of Tr(W) such that

i) 6(Tr(W);i) C TrR(W)it1

ii) For a,b homogeneous elements of Tr(W)

8(ab) = 6(a)b + (—1)4¢9%as(b) (Leibnitz rule)

iii) 62 = 0

The set of all elements of degree zero, Tr(W)y is a k-algebra which will be
denoted by A(A). This algebra is identified with Tr(Wp). The set of all elements
of degree one Tr(W); is an A(A)-bimodule, which can be identified with A(A) @r
W1 ®r A(A), and will be denoted by V(A). Thus Tr(W) is a differential graded
algebra with differential . For vy, ve in Tr(W) we denote its product by vjvs, in
particular if the above elements are in W, v1vs = v1 ® vs.

Let A = (R,W,0) be a tbocs. The category of representations of A, RepA is
defined as follows:

The objects of Rep(.A) are the left A(A)-modules.

Given two A(A)-modules M and N, a morphism f : M — N in RepA is given
by a pair f = (f°, f!), where

f° € Homp(M,N), f'€ Hompuay aca)(V(A), Homy (M, N))

such that for all a € A(A),m € M:

af(m) = f*(am) + f1(8(a))(m).
Observe that the pair (f°,0) is a morphism in RepA iff f° is a A(A)-morphism.
Now if f = (f° f1): M — N and g = (¢°,¢g') : N — L are morphisms in RepA,
the pair given by (¢°f°, (gf)')) with

l
(9)' (W) =g @) +g° S (v) + D9 (w) 1 (v])

for 6(v) = Zl viv2, vl v? € V(A), is again a morphism. We will put gf =

=1 "2 "1 “17 71

(910, (g.)").
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Using the properties of § one can see that RepA is a category. The identity
morphism for M € RepA is given by the pair idys = (idps, 0).
For a tbocs A = (R, W, §) we have a functor

I4:ModA(A) — Rep A

which is the identity on objects and for morphisms u : M — N of A(A)-modules,
we have I4(u) = (u,0).

Let S be a k-algebra containing Sy as k-subalgebra. We assume Sy is a basic
semisimple finite dimensional k-algebra, 1 = 2?21 e; a decomposition into central
orthogonal primitive idempotents.

Definition 3.1. Let W be a S-bimodule. A Sy-subimodule W of W is said to
be a So-free generator of W if any morphism of So-bimodules u : W — V, V a
S-bimodule has a unique extension to a morphism of S-bimodules v : W — V. In
this case we say that W is a Sy-free S-bimodule.

It is easy to see that W is a Sp-free generator of W iff the morphism
p:S®s, W®g, S— W given by p(s @ w® s1) = sws;

is an isomorphism. On the other hand if 0 : S®g, W ®g, S — W is an isomorphism
o(W) is a Sp-free generator of W.

Definition 3.2. A tbocs A = (S,W,0) is called So-free triangular if the following
conditions are satisfied:
T.1 There is a filtration of S-bimodules {0} = W C ... C W = Wy such that for
i>18(WE) € AW A;, where A; is the R-subalgebra of A generated by W™,
T.2 There is a filtration of Sy-bimodules Wol C..C Wg = Wy such that Wg s a
So-free generator of Wg.
T.3 There is a sequence of subbimodules {0} = W) C ... C Wi = W; such that for
i>16(Wf) c AW/t AW, A,
T.4 Wi is So-freely generated by Wi.

If a tbocs A satisfies T.1, T.2 and T.4, we say that A is weakly triangular.

Through the paper Sy-free triangular tbocses will be called simply triangular
tbocses. We recall that in the category Rep.A idempotents split, moreover for
f=(0"fY: M — N, fis an isomorphism if and only if f° is an isomorphism.

Definition 3.3. The k-algebra S is called minimal if there is a decomposition
1= Zl e; into central orthogonal primitive idempotents, such that e;S = e;k or ;S
is a rational k-algebra.

Definition 3.4. The tbocs A = (R,W,0) is called minimal if R is a minimal
k-algebra and Wy = 0.

If A= (R,W,0) is a minimal tbocs then A(A) = R,V(A) = W, for M,N €
RepA the morphisms from M to N are given by all pairs f = (f°, f!) with f9 €
HomR(M, N), fl € HomR_R(W, Homk(M, N))

Lemma 3.5. Suppose A = (R, W, §) is a triangular minimal tbocs, and f : M — M
a morphism in Rep A of the form f = (0, f1), then f is nilpotent.

Proof. Take 0 = W° c W! C ... ¢ W = W, the filtration of W = W, given by
condition T.3 of Definition 3.2. Then we have f? = (0, (f?)!) and (f?)}(W1) = 0.
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In general f = (0, (f")!) an.

( (f7)H(W"=1) = 0, therefore f5T1 = (0, (f5t1)!) and
(fY W) = (f) W) =0. C

onsequently f5+1 = 0. O

Proposition 3.6. Suppose A = (R,W,9) is a triangular minimal tbocs, then an
object M € RepA is indecomposable if and only if rRM is indecomposable.

Proof. If M is indecomposable in RepA, clearly rM is indecomposable. Sup-
pose now that pM is indecomposable. Take f = (f°, f!) an idempotent element
in End4(M). Then (f°)?% = f° thus f© = 0 or f© = idy. In the first case
f = (0, f1), thus f is nilpotent, then since f is also idempotent we conclude that
f = 0. In the second case f is an isomorphism therefore there is a g € End4(M)
with fg = gf = idy. Then idy = fg = f?9 = f(fg) = f. Therefore M is
indecomposable in Rep.A. This proves our result. O

For A = (R, W,§) a minimal thocs, take 1z = Y. ; ¢; a decomposition of 15 as
a sum of central primitive orthogonal idempotents.

Proposition 3.7. Suppose A = (R,W,0) is a minimal triangular tbocs. Then if
M € RepA is indecomposable there is an e; with e;M = M

Proof. Here R & Re; X ... X Re,, if M is an indecomposale R-module then
e; M = M for some e;. Our result follows from our previous proposition. ([

4. REDUCTION FUNCTORS

In this section we study full and faithful functors F' : RepB — Rep.A which have
been considered in [1].

Let R be a k-algebra, we recall from [1] that X a left R-module is called R— Rx
admissible if Rx is a k-subalgebra of Endz(X)° such that Endr(X)? = Rx &R
as Rx-bimodules with R an ideal of Endg(X)°P, finitely generated projective as
right Rx-module, and X finitely generated projective as right Rx-module. We
have X* = Homp, (Xgr,,Rx) is a Rx — R-bimodule and R* = Hompg, (Rr,, Rx)
is a Rx-bimodule. Take dual bases {p;,v;} for R and {z;,u;} for X as right
Rx-modules.

We have morphisms

e: X > X®p, R*, a:X">R'®p, X"
such that for u € X*,x € X, we have
e(x) ==Y pi@) @, alu)=> ulp;(z:)y; @ u;.
J ,J
Let A= (R, W, ) be atbocs and X a R— Rx admissible left R-module. Consider
the Rx-bimodules (Wx)o = X*Qr, Wo®r X, Wx)1 = (X *Qp, W1Qr, X)OR".
For u € X* and v € X we have k-linear maps:
271} :R— Ry,
for n > 1:
ot WO = T (W)
given by (;5271,(7“) = u(rv), ¢y, (W1 QW2 @ ... ® wy,) =
UQ W) ® Ty, @ Uy @Wa R Ty Uiy @ .. DTy, DU, Wy .

11,82, yfn—1
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These morphisms determine a k-linear map:
¢u,v : TR(W) - TRX (WX)7

such that for A\, A2 € Tr(W) we have ¢y »(AA2) = D7, duz; (A1) Pu, 0(A2). For
u € X*,v € X we put for A € Tr(W), da(u)n(A) = 22, ; upj(:))7Vjdu;v(A) and
qbu,e(v)(/\) = Ej ¢U7Pj(m)()‘)7j'

There is a differential dx in Try (Wx) with §% = 0, and such that for ¢ a
homogeneous element in Tg(W)! =W & W® & ... and u € X*, ve X

(*)  0x(Puo(t) = Paquyw(t) + Guw(3(8)) + (1) by ey (8)-
Forr € Ryu € X*,v € X, we have:

Pa(u),o(1) + Pu,e(w)(r) = Z u(p(w:))vjui(rv) — Z u(rp;(v))ys

= Z u(pj(djiui(’l"v)’}/j - Z U(pj (T”U)'Yj =0.

J
Thus the equality (*) holds also for » € R and consequently for any t € A(A).

We have a tbocs AX = (Rx,Wx,dx). Moreover there is a functor FX :
RepAX — RepA, such that for M € RepAX, FX(M) = X ®p, M as R-modules
and for w € Wy, w(z @ m) = Y, 2; @ ¢y, z(w)m. For f = (f°,f1): M — N a
morphism in RepA, FX(f) is given for z @ m € X ®r, M,w € W, by:

FX(f)’(x@m) =z @ fO(m) + ij(w) ® f1(y;)(m)

FX(N @)@ @m) = 3 f s © w o )(m)

Remark 4.1. We recall from Proposition 5.3 of [1] that an object L € RepA is
isomorphic to some FX (M) iff RL = X ®pr,, L' as R-modules for some Rx-module
L' . Observe that, in the above, if v € Tr(W) is an element of degree 0 then
YT @Mm = Zz T; Q (bul‘,m(’)/)m'

If (f,0) : M — N is a morphism in Rep A%, then FX((f,0)) = (g,0). Conse-
quently FX induces a functor FgX : Mod A(AX) — Mod A(A) such that FX1 4x =
IAFs%. Here pFgX (M) = X®p, M, then F5< is a right ezact functor which conmuts
with arbitrary direct sums, then Fg¥ =Y @ gax) — with Y the A(A) — A(AX)-
bimodule F5X(A(AX)). Thus rY = X ®g, A(AX) which is a finitely generated
projective right A(AX)-module. Thus Y is an A(A) — A(AX)-bimodule projective
finitely generated on the right side.

Proposition 4.2. Suppose A = (R,W,6) is a weak triangular tbocs, then AX =
(Rx,Wx;0x) is a weak triangular tbocs.

Proof. Consider W C ... € Wj° = Wy and (W) C ... C W{* = W the
corresponding filtrations given by the triangularity of A.
We denote by Bs(i,v,j) the Rx-bimodule generated by the elements of the form
f@weazwith fe X, we W zeX;.
We define
Wx)g'= > Boli,v,j),

i+2lv+j<m
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Wx)* = > Bi(i,v,j) @R,
i+2lv+j<m
(Wx)i =R; for i<,
As in [1] one can see, that AX = (Rx,Wx,dx) is a weak triangular tbocs with

filtrations
0=(Wx)§ C ... (Wx)o' ™) = (Wx)o

0=Wx)? C...c (Wx) 2T = (y),.
[l

In the rest of this section we see a very useful reduction functor introduced
originally in [7]. For this, let A = (R,W,d) be a tbocs with R a minimal k-
algebra. Suppose 1 =Y | ¢; is a decomposition into central primitive orthogonal
idempotents, and e;R = k[x]y,(5) fori=1,..,t,ejR=Fkfor j=t+1,...,n

Now fix a natural number d and elements g1, ..., g+ € k[z], with (g;, f;) = 1 for
i=1,..1

For p a monic irreducible factor of g;, 1 < i <t we put Z;(p) = e;R/(p) D ... ®
eiR/(p?). For 1 <i <t we put Z; = ®per(y,)Zi(p), where I(g;) is the set of monic
irreducible factors of g;. For i = t+ 1,....t + n we put Z; = e;R = e;k. The
R-module Z = ®;Z; is basic with End%/(Z) = Sz ® R and R = radEnd} (Z).

We consider now R’ = (e1R)g, X ... X (e:R),, clearly we have an epimorphism
in the category of rings R — R’ and Hompg(Z, R') = 0, Homg(R',Z) = 0. Then if
X = Z ® R/, we have a full and faithful functor:

F¥X :RepAY — RepA,

with AX (Rx,Wx,(sx) and Rx—SZ XR/

The decomposition of Z into the direct sum of indecomposable R-modules of
the form (e;R)/(p") with 1 < ¢ <t and e;R with ¢ > ¢, and the decomposition of
R’ into the direct sum of R-modules of the form (e;R)g,, with 1 < ¢ < ¢, gives a
decomposition of R’ into the direct sum of R-modules X;. For each X; we have
the idempotent e(X;) which is the composition of the projection of X on X; with
the corresponding canonical inclusion in X.

Forl <i<tand1l <u <dweputef(p)=e((e;R)/(p")), for p monic irreducible
factor of g;, and € = e((e;R)y,). For t +1 <i <t+mn we put ¢; = e(e; R).

The identity 1x of Rx has the following decomposition into central primitive
orthogonal idempotents:

t+n
SIS 3D O SEITED
i=1pel(g;) u=1 i=t+1

We have e?Rx = (e;Rx),, for 1 < i < t; e¥(p)Rx = ke¥(p) for 1 < i < t;
e;Rx = ke;, for t +1 <7 <t + n. Therefore Ry is a minimal k-algebra.
We recall that (Wx)o = X* ®r Wo ®r X. For 1 <i,5 <t we have:
(1) e)(Wx)oe) = (eiR)y, @r eiWoej @r (¢jR)q;;
(2) ef(Wx)oei(p) = (eiR)g, @r eiWoe; @r (¢;R)/(p");
(3) ef(p)(Wx)oe) = (e;R)/(p"))* @r eiWoe; @R (e;R)g;;
(4) e (p)(Wx)oej(q) = (e;R)/(p"))" @r e;Woe; ®r (e;R)/(¢").
For 1 <:i<t;t+1<j<t+n we have:
(5) €)(Wx)og; = (eiR)g, ®r eiWoe;
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(6) €;(Wx)o)e} = e;Woei ®r (€iR)q,;
(7) e (P)(Wx)o)e; = (eiR/(p"))" ©r eiWoey;
(8) €;(Wx)o)ei(p) = e;Woe; @r (eil2/(p")-

Finally for t +1 < i <n we obtain:
(9) e(Wx)oe; = ezwoej.

The reduction functor FX : RepAX — RepA will be called a (d, g1, ..., g¢)-
unravelling.

Definition 4.3. For A = (R,W,§) a tbocs, an object M € RepA is an R — E-
bimodule with E = End 4(M)°" and the right action of E on M given by m.f =
fO(m) form € M, f = (f°,f') € E. Then M is called endofinite if the length of
M as right E-module is finite, we will denote by endolM the length of M as right
E-module.

Suppose now that M is an endofinite object in RepA. Thenif 1 = )", ¢; is a de-
composition into central primitive orhogonal idempotents of R, each e; M is a R—E-
bimodule and M = @;e; M as R — E-bimodules, thus endolM = )", length(e; Mg).

Assume that ;R = R; = k[z]p, then E C Endg,(e;M) = E;. Then the
length(e;M))g, < length((e;M)g). Thus if M is endofinite, e;M is a endofinite
R;-module. Therefore e;Mp; = > jed L; with L; indecomposable R;-modules and
in the set {L;} there are only a finite number of isomorphism classes. The only
endofinite indecomposables R;-modules are k(z) and k[z]/(x —X\)™ with A € S(R;),
here m < endolM.

Lemma 4.4. If FX : RepAX — RepA is a (d,g1,...,9:) unravelling, for each
endofinite object N € RepA with endolN < d, there is a M € RepAX endofinite
with endolM < endolN and F(M) = N.

Proof. From the above considerations it follows that for N € RepA with
endolN < d, there is a M € RepAX with F(M) = N. We will assume that
F(M) = N. Take Ejp = Endy x(M)°P and Ey = End4(N)°P. There is an
isomorphism of k-algebras ¢ : Ey; — FEx induced by the functor FX. Take
R = radEndg(X)°P and an integer [ with R! = 0.

We have a filtration F of R-modules of X ®p, M = N:

3 =R'X®r, M C..C N, =RX®p, M C Ny=X®p, M.

Clearly F is a filtration of R-modules. The ring Fj; also acts on N by f(z®@n) =
r@nf =12 fO(n) for f = (f° f!) € En. The filtration F is also a filtration of
R — En-bimodules. Now observe that for n € N;_1, f € Ey, we have nf = no(f).
The same happen for n € N;/N; 1 for i = 0,...,1 — 2. Then the Ey length of N is
equal to the length of NV as Fj;-module. Now we recall that there is a decomposition
X = &;_;X; with the X, indecomposables pairwise nonisomorphic. Take f; the
composition of the projection on the i-th summand followed of the corresponding
injection. Then we have 1x = Y 7_, f; a decomposition into primitive orthogonal
idempotents, X f; = X;. Here we have that X is projective finitely generated as
right Rx-module, then each X; is Rx projective, then X; = n;f; Rx and n; # 0.
Then

endolN = lengthy N =lengthp X ®@r, M = ZlengthEMnifiM

=1
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> “lengthy,, f;M = lengthp, M = endolM.
i=1
This proves our claim. [

Definition 4.5. Let R be a minimal k-algebra. Suppose 1 = Z?:l e; 15 a de-
composition into central primitive orthogonal idempotents, and e;R = k[x]y, o) for
i=1,.,t, e,R =k for j = t+1,...,n, we say that a R-bimodule U is thin if
e;Ue; =0 fori<tandj<t. A tbocs A= (R,W,9) is called thin if Wy is a thin
R-bimodule.

Observe that having in account the above relations 1-9, if A is a thin tbocs, and
FX :RepAX — RepA is a (d, g1, ..., g;)-unravelling, then A% is also a thin tbocs.

Let S be a k-subalgebra of R, we recall that U a R-bimodule is called S- free
if there is a S-subimodule U of U such that the morphism of R-bimodules jp :
RRsU®sR—U given by pp(r1 ® u @ rg) = ryury is an isomorphism.

Lemma 4.6. Suppose U is a thin R-bimodule, then U is S-free if for all1 <i <t,
Ue; is free as right e; R-module and e;U 1is free as left e; R-module.

Proof. Observe that Ue; is free as right e; R-module iff it is .S free as R-bimodule.
Similarly e;U is free as left e; R-module iff it is S-free as a R-bimodule. Therefore
if the hypothesis of the proposition holds, then for each 1 < ¢ < ¢t there are S-
subbimodules V; of Ue; and ;V of e;U, such that the morphisms: py, : R®gV; ®g
R—Ue;and p: R®s (;V) ®s R — e;U are isomorphisms.

For V, = Zi7j2t+1 e;Ue;, the morphism py, : R®sVo®s R — Zi7j2t+1 e;Ue;j is
clearly an isomorphism. Consequently, if V' = 3" (V;4; V) 4V}, then the morphism
py  R®sV ®s R — U, is an isomorphim. Therefore V is a S-free generator for
the R-bimodule U. O

Definition 4.7. Let U be a R-bimodule, a filtration U C ... C U" = U s called
a S-free filtration if for u=1,...,r there are S-free generators V* of U such that
Vic..cvr.

The following is clear.

Lemma 4.8. Let U be a thin R-bimodule, suppose that for 1 < i < t there are
S-free filtrations U} C ..U = Ue;, ;U C ... C; U" = e;U, and U} C ... C U} =
dijsepr €ilUeg, thenif for 1 <u <r, U =3, (U +:U") + U,

Ulc..cU =U
is a S-free filtration for U.

Proposition 4.9. Let A= (R,W,d) be a thin weak triangular thocs, then there is
a (d, g1, ..., g1)- unravelling,

F¥X :RepA* — RepA
such that AX is a thin triangular tbocs.

Proof. Here A is weak triangular, we have a filtration

w: 0=WJCWgcC..cWj=W,
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satisfying the condition T.1 of Definition 3.2. There are elements g1, ..., g; such
that for 1 < ¢ < ¢,1 < u < r, (e;R)g, ®r W§ and W§ @r (e;R),, are free left
(e;R)q,-modules and free right (e; R),,-modules respectively, and for 1 <u <r—1,
(eiR)y, ®r W is a direct summand as left (e;R),, -module of (e;R),, ®r W
and W@ ! @ (e;R),, is a summand as right (e;R),,-module of W @r (eiR),, -
Now S = Sy x Sy with S = >, e;k and S; = Zigteik- Here W, is thin,
S1W§ @r (eiR)g, = 0 and (e;R)y, ®r W§S1 = 0. Thus each W§ ®@r (e;R)g, is
a So — (e;R)g,-bimodule, therefore there are Sp-left modules Wi“—submodules of
W @r (eiR),y,) such that, W' ¢ W and the morphisms
M - Wlu Ok (eiR)gi - W(;L R (eiR>gi7 Mz,u(w ® f) = wf7
are isomorphisms. Similarly, there is a Sp-right submodule IV of (e;R)g, @r W'
such that iW“_l C; W and
Via t (€iR)g, @i W' — (eiR)g, ®r W', vin(f @ w) = fu,
is an isomorphism.
Take now the (d, g1, ..., g )-unravelling, F* : RepA* — Rep.A. Then there is a
filtration of (Wx)o:
0= (Wx)3 C (Wx)§ C ... ¢ (Wx)s" = (Wx)o

having condition T.1 of Definition 3.2.
We define:

(Sx)o=_eik, (Sx)1=>_ ek, (Sx)2= > etp)k.
i>t i<t i<t pel(g;) u=1

Then we have Sx = (Sx)o X (Sx)1 X (Sx)2, (Sx) = Sp, (Sx)1 = S; and
Rx = (Sx)() X (Sx)g x R’ with (SX)I CR = Zi<t €?Rx.

Each W§ @ (eiR),, is a So — (e;R),,-bimodule.

Through the projection Rx — (Sx)o followed by the isomorphism (Sx)g — So
and the projection Rx — (e;R)g,, W§ ®r (e;R)4, becomes a Rx-bimodule.

Moreover we have the commutative diagram:

Wiu Sk (elR)g1 &} W(;l AR (eiR)gi

gl l:

1ru Hwg u
Rx ®sx Wz Xsx Ry —— WO ®R (eiR)gi7
therefore W¥ is a S x-free generator of the Rx-bimodule W§' @r (e;R)g;, -

?

For 2l(s + 1) < m < 2l(s +2) — 1 there is an isomorphism of Rx-bimodules:
(Wx)g'ed % (Wie:) @ (e:R),.
Then V™ := ¢} (W?) is a Sx-free generator of (W )iel.

3
We have the following commutativity diagram:

(Wx)ge?  —2" (Wie:) ©r (e:R),,

l l

m . y
(Wx)gtte) =5 (Wg'e:) ®r (eiR),,,

7
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with s = s+1if m = 2I(s+2)—1 and s’ = s otherwise. Thus we have V; C V;" 1,
and consequently the filtration

(Wx)3e? C ... ¢ (Wx)ZHDe0 = (W )oe?
is a Sx-free filtration. In a similar way one can prove that the filtration
QWx ) C oo € Q(Wx )oY = (W),

is also a Sx-free filtration. Therefore by Lemma 4.8 the filtration w is a Sx-free
filtration. Clearly (Wx); is a Sx-free R-bimodule, therefore our tbocs A% is free
triangular. O

Proposition 4.10. Let A = (R, W, ) be a thin free triangular tbocs, which is not
of wild representation type, then given a natural number d, there is a finite set of
full and faithful functors F; : RepB; — Rep A, i = 1,...,m such that:

i) each B; = (R;, W' 6;) is a minimal triangular tbocs;

it) for M € Rep A with endolM < d, there is an i € {1,...,m} and N € RepB;
with F;(N) = M;

iii) for each i € {1,...,m} there is a A(A) — R;-bimodule Y;, projective finitely
generated over the right side such that

Proof. By Proposition 4.9 there is a functor FX : Rep AX — Rep A, given by
a (d, g1, ..., g¢)-unravelling such that A% is a free triangular tbocs. Moreover for
M with endolM < d there is a N € Rep AX with FX(N) = M. Since A is not
of wild representation type then AX is not of wild representation type. Therefore
by [8] or by Theorem 11.1 of [4] there is a finite set of full and faithful functors
G, : RepB; — Rep AX satisfying conditions i), ii) and iii). Then using Lemma
4.4 and the second part of Remark 4.1 the full and faithful functors F; = FXG; :
Rep B; — Rep A satisfy i), ii) and iii). O

Remark 4.11. With the notation of Proposition 4.10 suppose 1p = Zle e; 1S a
decomposition into central primitive orthogonal idempotents. We consider D(A) =
Q?, for M € repA we put dimM = (dimgei M, ..., dimges M).
Fori=1,...,t, R; is a minimal k-algebra thus we have a decomposition of 1r, =
Zj(j) fij with f; 5,5 =1,...,5(j) a set of central primitive orthogonal idempotents.
The functor F; : RepB; — RepA determines a k-linear map tg, : D(B;) — D(A)
such that for M € repB; we have dimF;(M) = tp, (dimM).

5. A CATEGORY OF MORPHISMS

Let A = (R,W,§) be a minimal triangular tbocs. Supose 1p = >

j=16j with

{e;}7_; central primitive orthogonal idempotents in R, now assume that e = Z;
with ¢ < n is such that eR = Re = eRe is a semisimple k-algebra, we denote
f=> j>¢ €j- From the triangularity condition 73 of Definition 3.2 we have a
filtration 0 c Wl c....c W™ =W.

We will consider the following category of radical morphisms in Rep.A, M.

The objects of M are the radical morphisms ¢ : X — Y with fX = 0. The

morphisms from ¢ : X — Y to ¢’ : X’ — Y’ two objects of M, are given by pairs
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of morphisms u = (u1,us), w1 : X — X', ug : ¥ — Y/, morphisms in RepA such
that usg = ou;.

If v = (v1,v2) is a morphism from ¢ : X’ — Y’ to ¢ : X” — Y, then
vu = (viug,vaus). Observe that if ¢ : X — Y is a morphism object of M, then
this morphism has the form ¢ = (0, ¢!).

Clearly M is a category, we shall see that this category is equivalent to the
category of representations of a triangular tbocs.

We first describe the morphisms in the category A.

Suppose u = (u1,uz) : ¢ — ¢ is a morphism in M with ¢ = (0,¢') : X — Y,
¢ = (0,(¢)Y) : X! = Y'. Here uy = (ud,ui),ug = (u3,ud), usp = ¢’u1

For w € W, = W with 5(w) = Z wl ®w? we have:

w)u? +Z w}) = uge (w) + Y ui(w)e' (wy).
Forwe W,z e X, |
¢ (wf)(x) = ¢'(fz) =0, therefore @' (w) = ¢'(we).
In a similar way we have (¢')!(w) = (¢')! (we). Moreover :

ui(fw)(@) = fui(w)(z) = 0,uj(wf)(@) = uj(f) =0,

therefore ul(w) = ul(ewe).

Then for w € W with §(w) = Y, w! ® w?, we have:

(2) (¢") (we)uy — u3¢' (we) Zul wie) = Y (&) (wyeyui(ewle).

S

Now in order to describe the category M in terms of a tbocs we introduce the
following triangular tbocs, B = (S, Wg, d5), with

R 0 0 We w0
s=( ohe )= (o "0 )man= (Y 0 )
For w € W with 6(w) = Y, w! ® w? we put
5 0 we _Z 0 w} ® 0 wle (0 wle ® 0 0
Lo o) &Z\o0o o 0 0 0 0 0 ew?e

_Z 0 wlewle—wle®ew?e
N 0 0 '
1

< 0 0 2 0 0
0 ewle 0 ew?e
_Z< ewe@ere)’

using Leibnitz rule one can extend dz to a function 0 : Tr(W) — Tr(W), in order
to see that 0% = 0, it is enough to prove that for w € W we have:

0 we w 0 0 0
5123(0 0 )O"%<o 0)0’5123(0 ewe)o'
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Take w € W with §(w) = Y, w! @ w? and d(w}) = ¥, wil @ wl? §(w?) =

s @ Wsyjo
21 22 :
> wy; ®@wyy. From ¢% = 0 we obtain:
:

Zw Zw ®w —0.

Taking 6%( 8 u(z)e ) = ( 8 g ),We have:

1,1
uzg wy'; ® ®we—§ w®w ®w
8,9 5,9
1,2 2 1 2,2
—I—E w S7je®ewse—g ws®w e®ew§je
5,J

+Zw e®ew e®ew e—Zw e®ew e®ew§fe
8,
Now taking the prOJections WRrWRRWRrW - WRrW rW g We, given
by w1 ®@we Qw3 — w1 Qwe RQwze; WRpWQrWrW — WRrWRgrWexgeWe
given by w1 ® we ® w3y — wy @ wee ® ewse and W Qr W Qr W Qr W — We Qg
eWe®greWe®peWe given by wy ® we @ ws — wie® ewse ® ewse of (1) we obtain
that © = 0.
In a similar way we obtain the second and thirth equalities.

Proposition 5.1. The tbocs B = (S, Wg, dg) is a weak thin triangular tbocs.
Proof. Here A = (R, W,0) is triangular, by definition there is a basic semisim-

ple k-subalgebra Ry of R. Then Sy = %0 elg e
0

subalgebra of S. We have filtrations {0} C (Wg)} C (W)} C ... ¢ (W)™ =
(Wg), for i =0, 1, with

i (0 Wie i wi 0
(WB)O - < 0 0 ) 7(WB)1 - ( 0 €Wi€ ) .
Then B satisfies condition 7.1, and T.3 of Definition 3.2. Now there is a Ry — Ry

subimodule W of W such that W = R @R, W ®pr, B. Then eWe = eRe ®QcRrye
eWe ®cr,e eRe, therefore:

is a basic semisimple k-

W0 (W 0
S®SO< 0 eWe)®SOS:( 0 eWe)'
Thus we also have condition T'.4 of Definition 2.1. This proves our result.

Theorem 5.2. There exists a functor ' : RepB — M which is an equivalence of
categories.

Proof. We have A(B) = Ts((Wg)o) = ( ](? ZFVEZ ) We have in A(B) the
. 1 O 0 0 .
idempotents n = 0 0) 7= 0 e ) Take V € RepB, here V is an

A(B)-module then V = nV @ oV as k-modules. Here V; = nV is a R-module and
Vo = oV is a eRe-module. The action of A(B) on V induces a morphism of R-
modules: h: We®cge Vo — V4. Conversely if V7 is a R-module, V3 is a e Re-module
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and h : We®cge Vo — V4 a morphism of R-modules the triple (V;, Va; h) determines
an A(B)-module V.
We recall we have an isomorphism

¥ : Homgr(We Qcge V2, V1) — Hompg_cre(We, Homy (Va, V71)).

Then if V € Rep B is given by the triple (Vi, Va; h) we define
F(V)=¢=(0,¢'): Vo — V; with ¢! = ¢(h)T € Hompg_cge(We, Homy(Va, V1))
= Homp_p(We,Homy(Va, V1)), where 7 is the inclusion of We in W. Clearly ¢ is
a morphism in A which is an object in M.

Now take z : V' — V' a morphism in Rep B, z = (2%, 2!). Here 2" is a morphism
of S-modules from V to V', then 2" = (29, 29) with 2¥ : Vj — V5 a morphism of
R-modules and 2§ : V3 — V4 a morphism of eRe-modules. On the other hand:

w0
o ( 0 eWe > > Hom (V. V")

is a morphism of S — S-bimodules, therefore z! = (21, 23) with
2zt © W — Homy(V4,V{) a morphism of R — R-bimodules and 2§ : eWe —
Homy, (V2, Vy) a morphism of e Re —eRe-bimodules. Since z : V' — V' is a morphism

in RepB we have for all we € We with §(w) =Y, w! @ w? and vy € Vi, vy € Va:

0 we of vi \ _ of 0 we V1 1 0 we
(o) (n)==(0 &) ()= v )

Then we obtain:

( W (w @ 28 (vz)) ) :ZO( h(w ® vo) )

1 2 2
1 wy 0 0 wige \ [0 wge 0 0 V1
+Zz{<o 0>®<0 0> (0 0>®<0 cw?e v )

from here we obtain the equality:
(3) (@) (w)(22(v2)) = 27 (¢ (w)(v2))
+y z (W) (6N (wl)(va) = Y () (whe)(z3(ewle) (v2)).

We have that u; = (29,2}) is a morphism from V; to V{ in RepA, and uy =
(28, 23) is a morphism from V5 to V4. Then by (2) we have that u = (uy,us) is
a morphism from ¢ = F(V) to ¢’ = F(V'). We put F(z) = u. Now is clear
that if F'(z) = 0, then z = 0. Moreover for any morphism u = (uy,us) : ¢ — ¢’
up = (Wl ul),us = (u3,ul). Here u§ € Homp(Vi,V{), u3 € Homge(Va, V5).
Thus the pair (ul,uY) define a morphism of S-modules z° : V' — V’. In a similar
way the pair of morphisms (u},ul) define a morphism of S — S-bimodules z! :
( V(I)/ eV(I)/e > — Homy(V, V’). Thus we obtain a morphism z = (2°,2): V — V’
in RepB such that F(z) = u.

Now if z: V — V' and 2’ : V! — V" are morphisms then F(z')F(z) = F(z'z).
Clearly F sends identities into identities and F' is a dense functor, this proves our
claim. O
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6. MAIN RESULTS

This section is devoted to the proofs of Theorem 1.1 and Theorem 1.2. In
the following for P a projective A-module we denote by S(P) the complex with
S(P)! = P and S(P)" =0 for i # 1. For h: P — P’ a morphism of A-modules
we denote by S(h) : S(P) — S(P’) the morphism of complexes given by S(h)! =
h, S(h)® = 0 for i # 1. For n > 1, we consider the following category M, of
morphisms in C}(Proj A). The objects of M,, are radical morphisms f : S(P) — X
in CL(Proj A) with P a projective A-module and X any object in CL(ProjA). The
morphisms from f: S(P) — X to f': S(P') — X’ are given by pairs of morphisms
u = (ur,uz), uy : P — P', ug : X — X' such that usf = f'S(u1). If u = (u1,ug) is
a morphism from f: S(P) — X to f': S(P’) — X' and v = (v1,v2) is a morphism
from f': S(P') — X' to f" : S(P") — X", then vu = (viu1,vouz). The identity
morphism in the object f : S(P) — X is given by the pair (idp,idx).

Proposition 6.1. There is a functor G : M,, — C}_,(ProjA) which is an equiv-
alence of categories.

Proof. Take f: S(P) — X an object in M,,. We have the morphism f!: P —
X', fis a radical morphism, thus Imf! C radX', moreover f is a morphism of
complexes, we have di f' = f2d} = 0. Therefore we have the complex G(f) in
Ci.1(ProjA) given by G(F)" = 0 for i outside the interval [1,...,n+1], G(f)! = P,
G(f)ytt =Xl fori=1,..,n, dé(f) = f1, dgr(}) =d% fori=1,...,n.

Now if u = (u1,u2) is a morphism from f : S(P) — X to f': S(P') — X', we
define G(u) in the following way: G(u)" = 0 for i outside the interval [1,...,n + 1],
Gu)! = us : G = P — G = P, Gt = uf : G = X —
G(f)*t = (X') fori=1,...,n.

We have dé(f)G(u)1 = (f)'ur = (ug)lf' = G(u)Qdé(f). For i = 1,...,n we have
d’g(},)G(u)iH = diuly = ubttdy = G(u)H‘Qde(}). From here we conclude that
G(u) : G(f) — G(f') is a morphism of complexes. We have G(idy) = idg(s). Now
if v is a morphism from f’: S(P') — X' to f": S(P") — X", G(v)G(u) = G(vu).
Clearly G is a full, faithful dense functor. ([l

Definition 6.2. Take X € C,(ProjA). Then Ex = Endc, (proja)(X) acts by the
left on each X*, we say that X has finite endolength if each X* has finite length as
Ex-left module. We define endol(X) = Y, lengthp X"

Now suppose Py, ..., P, is a representative system of the isomorphism classes
of the indecomposable projective A-modules. For H a A-module we put dimH =
(dimgHom(Py, M), ..., dimyHom (P, M)).

For the category Cp(projA) we consider ¢(Cp(projA)) = Q™. For X €
Cu(projA), we put ¢(X) = (dimX; /radXy;...;dim X, /rad X,).

Let C be a k-category and F a k-algebra, a C — FE-object is an object M € C
endowed with a homomorphism of k-algebras ap; : E — Ende(M)°P. If M and
N are C — E-objects, a morphism of C — E-objects from M to N is a morphism
f M — N in C such that for all r € E, fauy(r) = an(r)f. ¥ F:C — D is
a functor and M is a C — E-object, then F(M) is a D — E-object, taking ap(ar)

the composition E “¥ Ende(M)°P i Endp(F(M))°P. Clearly if f: M — N is a
morphism of C — E-objects, F((f) : F(M) — F(N) is a morphism of D — E-objects.



ON DERIVED TAME ALGEBRAS 21

Example 1

A C,(ProjA) — E-object is a complex X € Cy(ProjA) such that each X? is a
A — E-bimodule and for all i € Z, d’ is a morphism of A — E-bimodules. If X,Y
are C,(ProjA) — E-objects, a morphism of complexes f : X — Y is a morphism
of Cp(Proj A) — E-objects if each f¢: X* — Y is a morphism of A — E-bimodules.

Example 2

Let B and C be full subcategories of a category D, consider M the category of
morphisms f: X — Y inD with X € B,Y € C. Then f: X — Y is a M — E-object
if f is a morphism of D — E-objects. Clearly u = (uy,u2) : (f: X = Y) — (f:
X" —Y’) is a morphism of M — E-objects if and only if u; and ug are morphisms
of D — E-objects.

Example 3

Let A = (R,W,J) be a thocs. We say that M is an A — E-bimodule if it is
a RepA — E-object. Then for x € E we have ay(z) = (ap(z)°, ap(z)!). The
A — E-bimodule M is said to be proper if for all x € E, aps(r)t = 0. In this case
M is an R — E-bimodule with mz = aps(2)°(m). Moreover for a € A(A),m € M,
(am)z = ap(z)°(am) = aapr (2)°(m) = a(mz), consequently M is a A(A) — E-
bimodule. Clearly if M is a A(A)— E-bimodule then M is a proper A— E-bimodule.

If f=(f°fY): M — N is a morphism in Rep.A with M and N proper A — E-
bimodules, then f is a morphism of A — E-bimodules if and only if f° is a morphism
of R — E-bimodules and for all v € V(A), f'(v) : M — N is a morphism of right
FE-modules.

Theorem 6.3. Assume CL(projA) is not of wild representation type, then given
a natural number d, there is a finite set of full and faithful functors G; : RepB; —
CL(ProjA), i =1,...,t, such that:

i) the tbocses B; = (R;, W*,8;) are minimal triangular tbocses;

it) fori =1, ...,t there are complezes Y; = (YZJ) with Yij A—R; bimodules projectives
on both sides and finitely generated over the right side with F;(N) =Y ®pg, N;
iii) for any X € CL(ProjA) with endol(X) < d there is a i € {1,...,t} and a
N € RepB; with F;(N) = X.

Proof. We prove our claim by induction on n. First we consider the case n = 1.
Clearly C1(ProjA) = ProjA.

Take the tbocs U = (A,0,0), then Repd = Mod A. Consider X =, A, here
Enda(X)°? = S @ radA. We have the tbocs UX = (S, W, ), where Wy = 0, Wy =
(radA)* and 4 is the extension to Ts(W), using Leibnitz rule, of the comultiplication
(radA)* — (radA)* ®g (radA)*. There is a full and faithful functor FX : RepUX —
Mod A. For M € RepU*X, FX(M) = A ®s M. The full and faithful functor F*
induces an equivalence FX : RepUX — ProjA = Ci1(ProjA). Here UX is a
minimal tbocs, thus we have i), X = A is a A — S-bimodule projective fintely
generated on both sides, thus we have ii), here FX : Repd* — ProjA is an
equivalence and then we have iii).

Assume now our result proved for n, we will prove it for n + 1.

By the induction hypothesis for ¢ = 1,...,1 there are full and faithful functors
F; : RepA; — CL(ProjA) with A = (R;, W', 6;) minimal tbocses and complexes
Y; of A(A) — R;-bimodules projectives finitely generated over the right side such
that Yij = 0 for j outside the interval [1,n] and F;(N) 2 Y; ®g, N. Moreover if
X € C,(ProjA) and endol(X) < d, there is a N € RepA; for some i € [1,1] with
Fi(N)= X.
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The functors F; : RepA; — CL(ProjA) induce linear transformations tg, :
D(A;) — Q™" such that for N € rep A;, ¢(F;(N)) = tp, (dimN).

Take P a projective indecomposable A-module and suppose Z(P,i) € RepA is
such that F;(Z(P,i)) = S(P). Then tg,(dimZ (P, %)) = (dimP/radP;0;...;0). Take
fi,; the only primitive central idempotent of R; such that f; ;Z(P,4) # 0. Then if
R; f; j is not k, there are infinitely many non-isomorphic indecomposable objects T’
in RepA; such that dimTy = dimZ(P,4)). But then applying F; this implies that
there are infinitely many non-isomorphic indecomposable objects F;(Ty) in Rep.A
with dimF;(7Ts) = (dimP; 0; ...; 0), which is not possible. Therefore Rf; ; = k. Take
now f; the sum of all possible f; ; as before. Then R; f; is a semisimple k-algebra.

Now for i € [1,t] take L£; the category of radical morphisms u : Zo — Z; in
RepA; with f;Zy = Z3. By Theorem 5.2 there is an equivalence of k-categories
G; : RepB; — L;, with B; = (S;,Wg,,d5,) a triangular tbocs. Since A is not of
wild representation type then each B;,i € [1,] is not of wild representation type.
Then there are full and faithful functors F;; : RepA;; — RepB; for j € [1,1(1)]
with A; ; = (Si,;, Wi j,d; ;) minimal triangular tbocses such that for all M € RepB;
with endol(M) < d’ there is a N € RepA; ; for some j € [1,1(j)] with F; ;(N) = M.

The functor F; : RepA; — RepA induces a full and faithful functor F L, —
My, Fi(u: Zy — Z1) = Fy(u) : Fy(Zy) — Fi(Zy).

We have the following full and faithful functors:

Rep B:; % Rep B; 25 £; 15 M,, -5 CL,, (Proj A).

We have the proper B; ; — R; j-bimodule F; ;(R; ;) =V; ;. Then V; ; is a A(B; ;) —
R; j-bimodule. We recall that

Vij = (ViY, V% hij) with V}'; and V? R; — R;j-bimodules finitely generated

0,57 .
projectives over the right side. The morphism h;; : W'f; ®g, ij — Vf] is a
morphism of R; — R; j-bimodules. Then V;; and V;?; are proper A; — R; j-bimodules

and ¢; ; = (0,0; ;) : Vi3 — Vi; with ¢} ;(w)(z) = h; j(w)(m) for w € Wi,z € V.
Since ¢; ; is a morphism of R; — R; j-bimodules, h; ; is a morphism of A; — R; ;-
bimodules.

By definition G;(V; ;) = h

Now fz‘ij = ijv then (V; ®g, Vl2j)1 =Y} ®r, Vfg and (Y; ®r, ; Vi,;)* = 0 for
S 7é 1, (K QR; V;}j)s = Y;»S QR; V;}J for s € Z, Fi(hi’j)l = Uj 5, Fi(hi’j>s =0 for
s # 1.

For Z = GF;G;F; ;(Ri;) we have Z* = 0 for s outside the interval [1,n + 1],
Z' =Y @r VY, Z* =Y!@r VY ., Z't' =Y ®g VY and dj =
U5, di = d;,:l ®1forse2,n+1].

For M € Rep B; ; we have GF’Z-GiFZ-Vj(M) =7 Qg M.

We shall see that the functors H;; = GFiGiFi’j : RepB;; — C}]+1(Pr0j A)
satisfy the conditions i), ii) and iii). Here the tbocs B;; is triangular minimal,
thus we have i). Now for Z we have that for s € [1,n+ 1], Z° is a A — R, ;-
bimodule projective on both sides and finitely generated over the right side and for
M € RepB; j, H; j(M) = Z ®g, ; M, thus we have ii).

L VE = Vi Fi(Gi(Vig)) = Fi(hig) 1 Vi @, V2 —

ig t Vi igo L
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For proving iii) take X € CL,,(ProjA) with endol(X) < d. Then X = G(X, =
Xp) with X, = S(P),X; € CL(ProjA). Consider E = Endc,, proja)(X)%?, X;
and Xo are C,(ProjA) — E-bimodules and endol(X) = length; X7 + length 5 Xo.
Then endol(X;) < lengthp X7 and endol(Xs) < length X5. Therefore endol(X; ®
Xs3) < endol(X7) 4+ endol(X5) < d. Then there is an ¢ and Ny, No € Rep A; such
that F;(N1) = Xy, F;(N2) = X5. Since F; is a full functor, there is a morphism
v = (0,v%) : Ny — Ny such that Fj(v) is isomorphic to u. The morphism v is
an object of £;. Clearly v is an £; — E-bimodule with F (v) 2 u. Since G; is an
equivalence there is a N € B; with G;(N) = v. We may assume N = (Ny, Na; h),
then endol(IV) < endol(N;) + endol(N3) = endol(X;) 4+ endol(X5) < d. Then there
is a j and an object M € Rep B; ; with F; j(M) = N. Therefore H; j(M) = X, this
proves iii). O

Proof of Theorem 1.1 Suppose Cy,(projA) is not of wild representation type.
Therefore CL, (proj A) is not of wild representation type, consequently by Theorem
6.3, given a non negative integer d, there is a finite set of full and faithful functors
G; : RepB; — CL(ProjA), i = 1,...,t with conditions i), ii) and iii). Using the
notation of Theorem 6.3, for ¢ € {1, ...,t} we consider T; the set of central primitive
idempotents f; ; in R; with f; jR; # kf;;. For each f;; € T; we have Y f; ; €
CL(ProjA). Each Y“f;; is a A — R;fi; bimodule projective finitely generated
as right R;f; j~-module, since R;f; ; is a rational k-algebra, then Y™ f;; is a free
finitely generated right R;f; j-module. Then for almost all isomorphism classes
[X] of indecomposable objects in Cy,(projA) with dimpX < d, we may assume
X € CL (projA) and endol(X) = dimy X < d. Therefore for almost all such [X] we
have X = Y;®g,y, ; S(A) for some A € k and f; ; € T;. This proves that Cp,(proj A)
is of tame represehtation type. [

The following result implies Theorem 1.2.

Theorem 6.4. Assume that CL (projA) is not of wild representation type. Then
given a natural number d for almost all indecomposable object X € CL (proj A) with
dimgp X < d there is an E-almost split sequence:

X - F— X.

Proof. We may assume X is not £-projective then by Theorem 8.5 of [2], there
is an £-almost split sequence:

AX)—-FE—X

in CL (projA).

We will prove first that there is a constant ¢(A) depending only on the algebra
A such that for any Y € C} (projA), dimpA(Y) < ¢(A)dimyY. Take L = dimyA,
and the Nakayama functor v : projA — injA. We recall that if 1 = Y7 | e; is
a decomposition of the identity of A into orthogonal primitive idempotents then
v(Ae;) = D(e;A). Therefore if P = @;n;Ae;, then v(P) = @®;n;D(e;A). Thus
dimgv(P) =Y, n,dimgD(e;A) < >, n L < L(Y, nydimgAe;) = Ldim, P. If W =
(Wi di,) is a complex of finitely generated projective A- modules then v(W) =
(v(W?),v(dy)). If in addition W is a finite complex dimyv(W) = >, dimv(W?) <
Ldimy W.

Now choose a quasi-isomorphism ¢ : Z — 75" (v(X)[~1]), with Z = (Z,d)
such that Imd?, C radZ*!.



24 RAYMUNDO BAUTISTA

We have dim,H’(Z) = dim,H’(r<mX[-1]) < Ldim;X. Now A(X) = F(Z)
in CL (projA), thus dim, A(X) < ¢(A)dimpX with ¢(A) = L(mL + (m — 1)L? +
..2L™=1 4 L™). This proves our claim.

Given a natural number d, we take d’ = 2(1 + ¢(A))d. By Theorem 6.3 there
is a finite number of full and faithful functors F; : RepB; — CL (ProjA) with
B; = (R;, W' d;) minimal triangular tbocses such that for any Y € CL (ProjA)
with endolY < d’ there is a W € Rep B; with F;(W) 2 Y. Consider now the family
S of objects in CL (projA) which are isomorphic to some F;(fsR;) with f, central
primitive idempotent of R; such that fsR; = k. In the above family there is only a
finite number of isomorphism classes.

Take now an indecomposable object X € CL (projA) which is not in S with
dimiy X < d. Suppose moreover that X is not £-projective. Then there is an
E-almost split sequence:

a Y—-F—-X,
here endol(X ® E®Y) < dimp(X @ E®Y) < d, then there is a U € RepB;
with F;(U) 2 (X ® E®Y). Therefore there are objects N, M, W in Rep B; with
F,(M)= X,F;(N) 2Y,F;(W) 2 E. Since F; is full and faithful, thus there is an
almost split sequence N — W — M whose image is isomorphic to a. Here M is
not isomorphic to some f;R; with fs central primitive idempotent of R; such that
fsR; = k thus N = M which implies that X =Y. O

7. GENERIC COMPLEXES

Here we consider generic complexes in the sense of section 5 of [16]. For A a
derived tame algebra we shall see the relations between one-parameter families of
objects in D?(A) and generic complexes in D°(Mod A).

Definition 7.1. A compler X € D*(ModA) is called endofinite if H (X) has
finite length as E(X) = Endps(vod o) (X)-module for all i € Z.

An endofinite complex X is called gemeric if it is indecomposable and it is not
isomorphic to a bounded complex of finitely presented A-modules.

The homology endolength of an endofinite X object of D*(Mod A) is defined as:

hendolX = (length g x) H'(X))icz-

Definition 7.2. An infinite family F of pairwise non-isomorphic indecomposable
objects in DP(A), (respectively in Cyn(mod A)) is called one-parameter family if there
is a rational k-algebra R and a bounded complex X of A — R-bimodules (respectively
X a Cn(ProjA) — R-bimodule ) with each X' is free finitely generated over R, such
for any M € F, there is a A € S(R) with M =2 X ®g k[z]/(x — X). We say that F
is parametrized by Y .

If 7 and F; are two one-parameter families of complexes in Cp(mod A) the set
Fi,2 of those X € F; such that there is a Y € Fy with X =2 Y is either finite or
cofinite in 7. The relation between the one-parameter families defined by F; ~ F»
if the set F 5 is infinite is an equivalence relation. We say that F; is equivalent to
Fy if Fi o is infinite.

Definition 7.3. If X is a bonded complex of A — k(z)-bimodules a realization of X
is a bounded complex Y of A — R-bimodules, with R a rational k-algebra such that
X 2Y ®g k() in the category D’ (Mod A).
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Theorem 7.4. Let A be a derived tame k-algebra, with k algebraically closed field,
suppose X is a generic complex in D°(Mod A). Then:

1) X is isomorphic to P a bounded complex of finitely generated A — k(x)-bimodules,
moreover hendolX = (dimy,,) H*(P));

i1) there is a rational k-algebra R and a complez Y of A — R-bimodules free finitely
generated over the rigth side such that Y @ k(x) =2 X in D*(Mod A) and Y @ — :
mod R — D’(mod A) preserves indecomposables and isomorphism classes.
Moreover, if F is a one-parameter family of indecomposable objects in D’(mod A),
then there is a generic compler X € D*(Mod A) and a realization Y of X such that
F is equivalent to a one-parameter family parametrized by Y ®r R/(p)"™ with p a
prime element in R.

Proof. We may assume that for (h;) = hendolX*® we have h; = 0 for i < 2
and i > m, hy # 0. Take now P € KS™P(ProjA) quasi-isomorphic to X. Then
HY(P) =0 for i <2. We have F(P) is indecomposable in C} (ProjA), with F the
functor given after Lemma 2.2. Now F(P) = Q = (Q°, de) is a complex such that
each @' has finite lengh as Endg(Q)-module, then @ has endofinite length d. Since
we have an equivalence F : £,, — Cp(Mod A), @ is a generic object. By Theorem
6.3 there is a full and faithful functor G : Rep B — CL(ProjA) with B = (S, W, d)
a minimal triangular tbocs and G(M) = @ for some M € RepB. Thus M is a
generic object in Rep B, then there is a central primitive idempotent f € S such
that M = k(x)f.

By ii) of Theorem 6.3 there is a complex Z of A — S-bimodules projectives on
both sides and finitely generated over the right side such that for all N € Rep B,
F(N) 2 Z®g N, thus Q = Z ®g fk(z) = Zf ®fs5 k(z). Here R = fSf is a
rational k-algebra and Y = Zf is complex of projective right R-module then Y
is a complex of free finitely generated right R-modules. Our complex Y satisfies
the hypothesis of Corollary 2.7, therefore since Q@ = Y ®pg k(z), the morphism
dg + Q' — Q* is a monomorphism. But dp : P! — P? = dj, : Q" — Q?, then
db is a monomorphism. But H'(P) = 0, then d% = 0, but this implies that
PJ = 0 for j < 0, consequently P = Q. We have that the radical of Endg(M)
is nilpotent and Endg(M)/radEndg(M) = k(x), thus for Ep = Endc,, (proja)(P)
we have Ep/radEp = k(z). From this we obtain i). Since G is a full and faithful
functor, we obtain ii).

For the last statement of our theorem suppose that F is a one-parameter family
in DY(A). We may assume that there is a fixed h = (h;) such that for all X € F,
hdimX = h. By Theorem 2.4 we may assume that all X € CL (projA) and there
is a fixed d such that endolX < d. By Theorem 6.3 there are full and faithful
functors G; : RepB; — CL (projA) with B; = (R;, W;,§;) minimal tbocses such
that for all X € F there is a N € RepB; with F;(N) = X. Moreover there are
complexes Y; such that for M € RepB;, G;(M) 2 Y; ®g, M. In CL (projA) there
are one-parameter families parametrized by the complexes Y;f; ;R;/(p)" with p
prime element of R; f; ; and f; ; central primitive idempotents of R; with R; f; ; #
kfij. Almost all objects in F are in one of these one-parameter families, then F is
equivalent with one of these families. This proves our result. O
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