
ON DERIVED TAME ALGEBRAS

RAYMUNDO BAUTISTA

Abstract. Let Λ be a finite-dimensional algebra over an algebraically closed

field k. We prove that Db(Λ) the bounded derived category has tame repre-

sentation type (Λ is called tame derived ), if and only if the full subcategory
of Db(Λ) whose objects are perfect complexes is of tame representation type.

We see that if Λ is derived tame then, almost all isomorphism classes of inde-

composable complexes X• ∈ Db(Λ) with fixed homology dimension are perfect
and have Auslander-Reiten triangles of the form: X• → H• → X• → X•[1].

1. Introduction

Let Λ be a finite-dimensional algebra over an algebraically closed field k and
Db(Λ) be its bounded derived category. We consider ModΛ the category of left
Λ-modules. We denote by modΛ, Proj Λ, proj Λ, Inj Λ and inj Λ the full subcate-
gories of Mod Λ consisting of the finitely generated, the projectives, the finitely gen-
erated projectives, the injectives and the finitely generated injectives Λ-modules,
respectively. By Db(Mod Λ) we denote the bounded derived category of ModΛ,
we recall that Db(Λ) is the bounded derived category of the category mod Λ. If
X = (Xi, di

X)i∈Z is an object in Db(Λ) an invariant of it is given by its homology
dimension hdim = (hi)i∈Z with hi = dimkH

i(X).
A sequence of non negative integers h = (hi)i∈Z is called a homology dimension

if for all but finitely many i, hi = 0. We recall that according with [18], Db(Λ)
is called discrete and Λ derived discrete if there are only finitely many isoclasses
of indecomposables X ∈ Db(Λ) with fixed homology dimension. As for algebras,
definitions of tame representation type and of wild representation type has been
given in [12] for the category Db(Λ). The algebra Λ is called derived tame or derived
wild if the category Db(Λ) is of tame representation type or of wild representation
type, respectively.

In [18] it has been proved that Λ is derived discrete if and only if Db(Λ)prf , the
full subcategory of Db(Λ) whose objects are the perfect complexes is discrete. We
prove that a similar fact is also true for the tame case: Λ is derived tame if and only
if Db(Λ)prf is of tame representation type. In fact we prove that almost all isomor-
phism classes of indecomposable objects in Db(Λ) of given homology dimension are
isomorphism classes of perfect objects.

Moreover we see that if Λ is derived tame and h is a fixed homology dimension,
then for almost all isomorphism classes [Y ] with Y indecomposable perfect complex
with hdimY = h, there is an Auslander-Reiten triangle of the form:

Y → H → Y → Y [−1].
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In addition, if h = (hi), Y = (Y i, di
Y ) and n0 is the integer such that hn0 6=

0 and hi = 0 for i < n0, then Yj = 0 for j ≤ n0 − 1 and dn0−1
Y : Y n0−1 →

Y n0 is a monomorphism. This implies that for Λ derived tame for any fixed non-
negative integer, almost all isomorphism classes of indecomposable Λ-modules [M ]
with dimkM ≤ d, the projective dimension of M is equal to one.

For the proof of the above results, we consider in section 2, Cm(proj Λ) which is
the category of complexes X = (Xi, di

X) of finitely generated projective Λ-modules
with Xi = 0 for i outside the interval [1, ...,m]. We denote by C1

m(proj Λ) the full
subcategory of Cm(proj Λ) whose objects are the complexes X = (Xi, di

X) such
that Imdi−1

X ⊂ radXi for all i ∈ Z.
In general if C is a k-category a morphism f : M → N in C is called radical if

for any split monomorphism σ : X → M and any split epimorphism π : M → Y ,
πfσ : X → Y is not isomorphism. If P and Q are projective Λ-modules, f : P → Q
is a radical morphism if and only if Imf ⊂ radQ.

In section 6 we prove the following two results.

Theorem 1.1. For fixed m, either Cm(proj Λ) is of tame representation type or
of wild representation type.

The proof of this last result is in fact considered in [5] and [10], using bocses
with relations. We present a different proof using just free triangular bocses. We
recall from [2] that we have an exact category (Cm(proj Λ), E) in the sense of [17]
or [11], where E is the class of sequences of morphisms (conflations)

X
u→ E

v→ Y

such that for all i ∈ Z the sequence

0 → Xi ui

→ Ei vi

→ Y i → 0,

is an split exact sequence. The exact category (Cm(proj Λ), E) has enough projec-
tives and injectives and it has almost split sequences.

Theorem 1.2. Suppose Cm(proj Λ) is of tame representation type. Then for al-
most all isomorphism classes [X] of indecomposables with a fixed dimension d =
dimkX =

∑
i dimkX

i in the category Cm(proj Λ), there is an E-almost split se-
quence in Cm(proj Λ) of the form: X → E → X.

For this we use in a similar way as in [5] tbocses (introduced in [1]).
In section 7 we consider generic complexes in Db(ModΛ) in the sense of section

5 of [16], observe that this definition differs of the one given in [12]. With our
definition we obtain similar results to the ones given in [8] for Λ-modules. In
particular each generic complex is closely related to an one-parameter family of
objects in Db(Λ). In addition we prove that if X is a generic complex for a derived
tame algebra Λ, X is isomorphic in Db(ModΛ) to a bounded complex of projective
Λ-modules.

2. Bounded derived categories

Here we see some consequences of Theorems 1.1 and 1.2 for the derived category
Db(Λ).

In the following a rational algebra is a k-algebra of the form:
k[x]h = {f/hm|m is a positive integer, f ∈ k[x]}, the support of a rational algebra
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is defined by S(k[x]h) = {λ ∈ k|h(λ) 6= 0}. For λ ∈ S(k[x]h), the simple k[x]h-
module k[x]/(x− λ) will be denoted by Sλ.

For h a homology dimension we denote by V(h) the full subcategory of Db(Λ)
whose objects are indecomposables X ∈ Db(Λ) with hdimX = h.

We recall the following definitions:
1) Λ is called derived discrete if for each homology dimension h, the category

V(h) has only finitely many isomorphism classes.
2) Λ is called derived tame if for each homology dimension h there is a finite set of

rational algebras Ru, u = 1, ..., s and for each u a bounded complex Mu of Λ−Ru-
bimodules free finitely generated over Ru, such that for almost all isomorphism
classes [X] with X ∈ V(h) there is a λ ∈ S(Ru) with X ∼= Mu ⊗Ru

Sλ for some
u ∈ {1, ..., s}.

3) Λ is called derived wild if there is a bounded complex W of Λ − k < x, y >-
bimodules free finitely generated over k < x, y > such that the functor

W ⊗k<x,y> − : mod k < x, y >→ Db(Λ)

preserves isoclasses and indecomposables.
Concerning the categories Cm(proj Λ) we recall the definitions of finite repre-

sentation type, tame representation type and wild representation type.
4) Cm(proj Λ) is called of finite representation type if it has only a finite number

of isomorphism classes of indecomposables.
5) Cm(proj Λ) is called of tame representation type if for any given positive

integer d there are rational algebras Ru, u = 1, ..., s and for each u a complex
Mu = (M i

u, d
i
Mu

) with M i
u a Λ − Ru-bimodule free finitely generated over Ru,

projective as Λ-module and M i
u = 0 for i outside the interval [1, ...,m], such that

for almost all isomorphism class [Y ] with Y indecomposable and dimkY ≤ d there
is a λ ∈ S(Ru) such that Mu ⊗Ru Sλ

∼= Y .
6) Cm(proj Λ) is called of wild representation type if there is a bounded complex

of Λ − k < x, y >-bimodules free finitely generated over k < x, y >, projectives as
Λ-modules, W = (W i, di

W ) with W i = 0 for i outside the interval [1, ...,m], such
that the functor:

W ⊗Ru − : mod k < x, y >→ Cm(proj Λ)

preserves isoclasses and indecomposables.

We need the following results.

Lemma 2.1. Suppose Y = (Y i, di
Y ) ∈ C1

m(proj Λ) is such that dimkH
j(Y •) ≤ c

for all j and for some u ∈ [2, ...,m], dimkY
u ≤ du, then dimkY

u−1 ≤ (du + c)L,
with L = dimkΛ.

Proof. We have dimkY
u−1/Kerdu−1

Y = dimkImdu−1
Y ≤ du, moreover we know

that dimkKerdu−1
Y /Imdu−2

Y ≤ c. Therefore dimkY
u−1/Imdu−2

Y ≤ c+ du.
Here Imdu−2

Y ⊂ radY u−1, thus dimkY
u−1/radY u−1 ≤ dimkY

u−1/Imdu−2
Y . Con-

sequently, dimkY
u−1 ≤ (c+ du)L. �

Lemma 2.2. Let Y • = (Y i, di
Y ) ∈ C1

m(proj Λ) such that for all j, we have the
inequality dimkH

j(Y •) ≤ c for some fixed c. Then

dimkY ≤ c(mL+ (m− 1)L2 + (m− 2)L3 + ...+ 2Lm−1 + Lm).
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Proof. Here Y m+1 = 0, then by our previous lemma, dimkY
m ≤ cL. Then

again by lemma 2.1 we have, dimkY
m−1 ≤ c(L+L2), dimkY

m−2 ≤ c(L+L2 +L3),
..., dimkY

1 ≤ c(L+ L2 + ...+ Lm). From here we obtain our result. �

We denote by C≤m,b(Proj Λ) the category of complexes X = (Xi, di
X) with

Xi ∈ Proj Λ and Xi = 0 for i > m, such that Hi(X) = 0 for almost all i. By
K≤m,b(Proj Λ) we denote the corresponding homotopy category.

Following [2] we denote by Lm the full subcategory of K≤m,b(Proj Λ) whose
object are those X with Hi(X) = 0 for i ≤ 1.

The functor F : K≤m,b(Proj Λ) → Cm(Proj Λ) which sends a complex:

X : ...→ X−1 d−1

→ X0 d0

→ X1 d1

→ ...→ Xm → 0

to
F (X) = ...0 → 0 → X1 d1

→ ...→ Xm → 0,
induces an equivalence:

F : Lm → Cm(Proj Λ),
where Cm(Proj Λ) is the category with the same objects as Cm(Proj Λ) and mor-
phisms those in Cm(Proj Λ) modulo the ones which are factorized through E-
injective objects ( see Corollary 5.7 of [2]).

Moreover we have an embedding

τ≥1 : Lm → Db(Mod Λ).

Observe that for P ∈ Lm, q : P → τ≥1P the natural morphism is a quasi-
isomorphism.

For a natural number d we denote by Fd the full subcategory of Cm(proj Λ)
whose objects are those indecomposables X with dimkX ≤ d. We denote by Ud the
full subcategory of Lm whose objects are those Y ∼= F (P ) with P ∈ Fd. By Vd we
denote the full subcategory of Db(Λ) whose objects are those isomorphic to some
τ≥1P with P ∈ Ud.

We have V(h) ⊂ Vd, if d = |h|(mL + (m − 1)L2 + ... + 2Lm−1 + Lm) with
|h| = max{hi}i∈Z, L = dimkΛ.

Theorem 2.3. a) Λ is derived discrete if and only if for all m, Cm(proj Λ) is of
finite representation type;
b) if Λ is derived wild it is not derived tame;
c) if for some m, Cm(proj Λ) is of wild representation type then Λ is derived wild;
d) Λ is derived tame if and only if for all m, Cm(proj Λ), is of tame representation
type;
e) Λ is either derived tame or derived wild (see Bekkert-Drozd [5]).

Proof. Suppose Λ is derived discrete, then by [18] Λ is derived hereditary of
Dynkin type or it is a gentle algebra.

For a Krull-Schmidt category C we denote by ind C the full subcategory of C
whose objects are the indecomposables of C.

If Λ is hereditary then C2(proj Λ) is of finite representation type, for m > 2 we
have:

indCm(proj Λ) ⊂ indC2(proj Λ) ∪ indC2(proj Λ)[1] ∪ ... ∪ indC2(proj Λ)[m− 1]

then indCm(proj Λ) has only finitely many isomorphism classes, thus it is of finite
representation type.
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If Λ is derived equivalent to a hereditary algebra A of Dynkin type, there is a
bounded complex T over Λ − A-bimodules projective finitely generated over both
sides such that the functor:

−⊗L T : Db(Λ) → Db(A)

is an equivalence. Then for m there is a n and a l such that we have a functor:

G(−) = −⊗Λ T [l] : Cm(proj Λ) → Cm+n(projA)

with the following property: if Y and X are indecomposables in Cm(proj Λ) which
are not E-injectives or E-projectives then their images under G are also indecom-
posables and G(Y ) ∼= G(X) imply Y ∼= X. Here Cm+n(projA) is of finite repre-
sentation type, then also Cm(proj Λ) is of finite representation type.

Now suppose that Λ is a gentle algebra k(Q, I). Then from the description of
the objects in K−,b(proj Λ) in [6] one can see that if there are generalized strings
in Q of arbitrary size corresponding to complexes in Cm(proj Λ) for some fixed m,
then there are generalized bands, but this implies that Λ is not derived discrete,
therefore for any m, Cm(proj Λ) is of finite representation type.

Conversely assume Cm(proj Λ) is of finite representation type for all m.
Take h = (hi) a homology dimension, we may assume hi = 0 for i outside the

interval [2, ..,m]. Take d = |h|(mL+(m−1)L2+ ...+2Lm−1+Lm), then by Lemma
2.2, V(h) ⊂ Vd. The categories Vd, Ud and Fd are equivalent, by assumption Fd

has only a finite number of isoclasses, the same is true for V(h). Therefore Λ is
derived discrete.

The part b) is proved in Theorem 5.2 of [12].
c) Suppose that Cm(proj Λ) is of wild representation type. Then there is a

bounded complex W = (W i, di
W ) of Λ − k < x, y >-bimodules free finiteley gen-

erated over the right side, projectives as Λ-modules, with W i = 0 for i outside
the interval [1, ...,m] and Imdi−1

W ⊂ radΛW i, such that the functor W ⊗k<x,y> − :
mod k < x, y >→ Cm(proj Λ) preserves iso-classes and indecomposables. The com-
position of this functor with the composition Cm(proj Λ) → K−,b(proj Λ) → Db(Λ)
also preserves iso-classes and indecomposables, consequently Λ is derived wild.

d) Suppose Λ is derived tame, then if for some m, Cm(proj Λ) is of wild repre-
sentation type then by c), Λ is derived wild, which contradicts b). Therefore for
all m, Cm(proj Λ) is not of wild representation type, but this implies, by Theorem
1.1 that for all m, Cm(proj Λ) is of tame representation type.

Conversely assume that for allm, Cm(proj Λ) is of tame representation type. Let
h be a fixed homology dimension, take d = |h|(mL+(m−1)L2 + ...+2Lm−1 +Lm)
then V(h) ⊂ Vd. Therefore there are rational algebras Ru, u = 1, ..., s and for each
u a bounded complex Mu = (M i

u, d
i
Mu

) over the Λ − Ru-bimodules free finitely
generated over the right side with M i

u = 0 for i outside the interval [1, ...,m] such
that for almost all isomorphism class [X] in Fd there is a u and λ ∈ S(Ru) with
X ∼= Mu ⊗Ru

Sλ.
We may assume that for all u and i, Imdi−1

Mu
and Kerdi

Mu
are direct summands

of M i
u as right Ru-modules.

Then for each u, Wu = τ≥1Mu is a bounded complex over the Λ−Ru-bimodules
which is free finitely generated over the right side.

Take Y ∈ V(h), then there is a P ∈ Ud with a quasi-isomorphism q : P → Y , we
have τ≥1P ∼= Y in Db(Λ).
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Clearly τ≥1P = τ≥1F (P ), F (P ) ∈ Fd. Therefore F (P ) ∼= Mu ⊗Ru Sλ for some
u and some λ ∈ S(Ru). Thus

Y ∼= τ≥1P = τ≥1F (P ) ∼= τ≥1(Mu ⊗Ru Sλ) ∼= τ≥1(Mu)⊗Ru Sλ = Wu ⊗Ru Sλ.

consequently Λ is derived tame.
e) Suppose Λ is not derived wild, then by c) for all m, Cm(proj Λ) is not of wild

representation type, by Theorem 1.1, for allm, Cm(proj Λ) is of tame representation
type. Therefore by d), Λ is derived tame. �

Theorem 2.4. Let Λ be a derived tame algebra and h = (hi) be a fixed homology
dimension such that for n0, hn0 6= 0 and hi = 0 for i < n0. Then for almost all
isomorphism class of indecomposable objects X ∈ Db(Λ) with hdimX = h, X is a
perfect object and there is an Auslander-Reiten triangle of the form:

X → H → X → X[1].

Moreover if X = (Xi, di
X) then Xi = 0 for i < n0− 1 and dn0−1

X : Xn0−1 → Xn0 is
a monomorphism.

Proof. After a shifting we may assume hi = 0 for i ≤ 1 and i > n, h2 6= 0.
By U(h) we denote the full subcategory of K≤n,b(proj Λ) whose objects are quasi-
isomorphic to complexes X ∈ V(h). The categories U(h) and V(h) are equivalent.
We will see that for almost all isomorphism classes of objects P in U(h), P is a
finite complex. If P ∈ U(h) then hdimP = h, thus dimkH

1(P ) = h1 = 0, therefore
U(h) ⊂ Ln.

Recall that we have an equivalence F : Ln → Cn(proj Λ).
Denote by F(h) the full subcategory of Cn(proj Λ) whose objects are isomorphic

to some F (P ) with P ∈ U(h). The categories U(h) and F(h) are equivalent
categories. By Lemma 2.2, F(h) ⊂ Fd for d = |h|(nL+(n− 1)L2 + ...2Ln−1 +Ln).

For our purposes it is convenient consider F(h)[−1] as a full subcategory of
Cm(proj Λ) with m = n+ 3. If Y = (Y i, di

Y )i∈Z ∈ F(h)[−1], then Y 1 = 0, Y n+2 =
0, Y n+3 = 0 and dimkY ≤ d.

By d) of Theorem 2.1 Cm(proj Λ) is of tame representation type. Then by
Theorem 1.2 for almost all isomorphism class [Y ] with Y ∈ Cm(proj Λ) there is an
almost split conflation

Y → E → Y

in Cm(proj Λ).
Following the notation of [2] we recall that A(Y ) ∼= Y . In order to calculate

A(Y ) we take Z = (Zi, di
Z)i∈Z = ν(Y )[−1] and a quasi-isomorphism q : Q =

(Qi, di
Q)i∈Z → τ≤mZ, with Q ∈ C≤m,b

n (proj Λ). Then A(Y ) ∼= F (Q). Moreover by
[14] there is an Auslander-Reiten triangle in Db(Λ):

Z → G→ Y → Z[1].

We have Zm = Zn+3 = ν(Y n+2) = 0, therefore τ≤mZ = Z.
Here Z is indecomposable, then Q is an indecomposable complex in the cate-

gory K≤m,b(proj Λ), we may choose Q an indecomposable object in the category
C≤m,b(proj Λ) with Qm = 0, here Zm = 0.

We have F (Q) ∼= A(Y ) ∼= Y in Cm(proj Λ), thus, Q1 ∼= Y 1 = 0. Here Q is
indecomposable, this implies that Qi = 0 for i ≤ 1. Moreover Z2 = ν(Y 1) = 0, then
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H2(Q) ∼= H2(Z) = 0. Therefore the morphism d2
Q : Q2 → Q3 is a monomorphism

and Q ∼= Y , and Z ∼= Q ∼= Y in Db(Λ).
Thus we have an Auslander-Reiten triangle in Db(Λ):

(∗) Y → G→ Y → Y [1].

Now Y [1] ∈ F(h) then Y [1] ∼= F (P ) with P ∈ U(h). Therefore P 1 ∼= Y 2 ∼=
Q2, P 2 ∼= Y 3 ∼= Q3. The morphism d2

Q : Q2 → Q3 is isomorphic to the morphism
d1

P : P 1 → P 2, thus this last morphism is a monomorphism.
Here h1 = dimk(Kerd1

P /Imd
0
P ) = 0, then Imd0

P = Kerd1
P = 0, consequently

d0
P = 0. But P is indecomposable, therefore P i = 0 for i ≤ 0. Consequently
P = F (P ) ∼= Y [−1]. Thus applying the equivalence [−1] to (∗) we obtain our
result. �

Corollary 2.5. Suppose Λ is selfinjective, then either it is derived discrete or
derived wild.

Proof. Suppose Λ is neither derived discrete nor derived wild. Then there
are infinitely many isomorphism classes in V(h) for some homology dimension h.
Therefore there is an indecomposable X in Db(Λ) with an Auslander-triangle of
the form X → H → X → X[1] with X = (Xi, di

X) indecomposable object in
C1

m(proj Λ) and d1
X : X1 → X2 is a monomorphism, since X1 is injective, this is

not possible. �

Corollary 2.6. Let Λ be derived tame, then for a fixed homology dimension h,
for almost all isomorphism classes [X] with X ∈ Db(Λ) a finite complex of finitely
generated projectives and hdimkX = h, X is isomorphic to a finite complex of
finitely generated injectives.

Remark. Observe that gentle algebras are Gorenstein and in this case all finite
complexes of finitely generated projectives are also isomorphic to finite complexes
of finitely generated injectives (see [13]).

Corollary 2.7. Let Λ be a derived tame algebra. Suppose P is a bounded complex
of Λ−R-bimodules projectives over Λ and free finitely generated over R, a rational
algebra, such that for all λ ∈ S(R), P ⊗R Sλ is indecomposable in Db(Λ), and for
λ 6= µ ∈ S(R), P ⊗R Sλ � P ⊗R Sµ in Db(Λ). Then if hdimk(x)P ⊗R k(x) = h =
(hi) is such that hn0 6= 0 and hj = 0 for j < n0, we obtain that the morphism
dn0−1

P ⊗ 1 : Pn0−1 ⊗R k(x) → Pn0 ⊗R k(x) is a monomorphism .

Proof We may assume that for all λ ∈ S(R), all Kerdi are direct summands of
P i as right R-modules. Thus hdimP ⊗R Sλ = h for all λ ∈ S(R). By Theorem
2.2, we may also assume that for all λ ∈ S(R), P i ⊗ Sλ = 0 for i < n0 − 1 and
Ker(dn0−1 ⊗ 1 : Pn0−1 ⊗ Sλ → Pn0 ⊗ Sλ) = 0. But this implies our assertion. �

Corollary 2.8. Suppose Λ is a derived tame algebra and d a fixed non-negative
integer, then almost all isomorphism classes of indecomposable Λ-modules M with
dimkM = d have projective dimension one.
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Proof. For M indecomposable with dimkM = d, take

...→ P−3
M

d−3
M→ P−2

M

d−2
M→ P−1

M

d−1
M→ P 0

M
η→M → 0

a minimal projective resolution of M . Consider PM = (P j
M , dj

M ) with P j
M = 0, for

j > 0 and dj
M = 0 for j ≥ 0. Then for hdimM = (hi), we have h0 = d, hj = 0 for

j < 0. Then by Theorem 2.4 for almost all isomorphism classes [M ], P j
M = 0 for

j < −1. This proves our claim. �

3. Bocses

A tbocs is a triple A = (R,W, δ), where R is a k-algebra (k is a field ), W is
a R-bimodule such that W = W0 ⊕W1 as R bimodules. The elements of Wi are
called homogeneous of degree i, i ∈ {0, 1}. For w ∈Wi, we put deg(w) = i.

Take now TR(W ) the tensor algebra:

R⊕W ⊕W⊗2
⊕ ...

with the graduation induced by the one of W . The R-module generated by the set
of homogeneous elements in TR(W ) of degree i will be denoted by TR(W )i. Then
δ is a endomorphism of R-bimodules of TR(W ) such that

i) δ(TR(W )i) ⊂ TR(W )i+1

ii) For a, b homogeneous elements of TR(W )

δ(ab) = δ(a)b+ (−1)degaaδ(b) (Leibnitz rule)
iii) δ2 = 0
The set of all elements of degree zero, TR(W )0 is a k-algebra which will be

denoted by A(A). This algebra is identified with TR(W0). The set of all elements
of degree one TR(W )1 is an A(A)-bimodule, which can be identified with A(A)⊗R

W1 ⊗R A(A), and will be denoted by V (A). Thus TR(W ) is a differential graded
algebra with differential δ. For v1, v2 in TR(W ) we denote its product by v1v2, in
particular if the above elements are in W , v1v2 = v1 ⊗ v2.

Let A = (R,W, δ) be a tbocs. The category of representations of A, RepA is
defined as follows:

The objects of Rep(A) are the left A(A)-modules.
Given two A(A)-modules M and N , a morphism f : M → N in RepA is given

by a pair f = (f0, f1), where

f0 ∈ HomR(M,N), f1 ∈ HomA(A),A(A)(V (A),Homk(M,N))

such that for all a ∈ A(A),m ∈M :

af0(m) = f0(am) + f1(δ(a))(m).

Observe that the pair (f0, 0) is a morphism in RepA iff f0 is a A(A)-morphism.
Now if f = (f0, f1) : M → N and g = (g0, g1) : N → L are morphisms in RepA,
the pair given by (g0f0, (gf)1)) with

(gf)1(v) = g1(v)f0 + g0f1(v) +
l∑

i=1

g1(v1
i )f1(v2

i )

for δ(v) =
∑l

i=1 v
1
i v

2
i , v1

i , v
2
i ∈ V (A), is again a morphism. We will put gf =

(g0f0, (gf)1).
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Using the properties of δ one can see that RepA is a category. The identity
morphism for M ∈ RepA is given by the pair idM = (idM , 0).

For a tbocs A = (R,W, δ) we have a functor

IA : ModA(A) → RepA
which is the identity on objects and for morphisms u : M → N of A(A)-modules,
we have IA(u) = (u, 0).

Let S be a k-algebra containing S0 as k-subalgebra. We assume S0 is a basic
semisimple finite dimensional k-algebra, 1 =

∑n
i=1 ei a decomposition into central

orthogonal primitive idempotents.

Definition 3.1. Let W be a S-bimodule. A S0-subimodule W̃ of W is said to
be a S0-free generator of W if any morphism of S0-bimodules u : W̃ → V , V a
S-bimodule has a unique extension to a morphism of S-bimodules v : W → V . In
this case we say that W is a S0-free S-bimodule.

It is easy to see that W̃ is a S0-free generator of W iff the morphism

ρ : S ⊗S0 W̃ ⊗S0 S →W given by ρ(s⊗ w ⊗ s1) = sws1

is an isomorphism. On the other hand if σ : S⊗S0 W̃ ⊗S0 S →W is an isomorphism
σ(W̃ ) is a S0-free generator of W .

Definition 3.2. A tbocs A = (S,W, δ) is called S0-free triangular if the following
conditions are satisfied:
T.1 There is a filtration of S-bimodules {0} = W 0

0 ⊂ ... ⊂ W r
0 = W0 such that for

i ≥ 1 δ(W i
0) ⊂ AiW1Ai, where Ai is the R-subalgebra of A generated by W i−1

0 .
T.2 There is a filtration of S0-bimodules W̃ 1

0 ⊂ ... ⊂ W̃ r
0 = W̃0 such that W̃ j

0 is a
S0-free generator of W j

0 .
T.3 There is a sequence of subbimodules {0} = W 0

1 ⊂ ... ⊂W s
1 = W1 such that for

i ≥ 1 δ(W i
1) ⊂ AW i−1

1 AW i−1
1 A.

T.4 W1 is S0-freely generated by W̃1.
If a tbocs A satisfies T.1, T.2 and T.4, we say that A is weakly triangular.

Through the paper S0-free triangular tbocses will be called simply triangular
tbocses. We recall that in the category RepA idempotents split, moreover for
f = (f0, f1) : M → N , f is an isomorphism if and only if f0 is an isomorphism.

Definition 3.3. The k-algebra S is called minimal if there is a decomposition
1 =

∑
i ei into central orthogonal primitive idempotents, such that eiS = eik or eiS

is a rational k-algebra.

Definition 3.4. The tbocs A = (R,W, δ) is called minimal if R is a minimal
k-algebra and W0 = 0.

If A = (R,W, δ) is a minimal tbocs then A(A) = R, V (A) = W , for M,N ∈
RepA the morphisms from M to N are given by all pairs f = (f0, f1) with f0 ∈
HomR(M,N), f1 ∈ HomR−R(W,Homk(M,N)).

Lemma 3.5. Suppose A = (R,W, δ) is a triangular minimal tbocs, and f : M →M
a morphism in RepA of the form f = (0, f1), then f is nilpotent.

Proof. Take 0 = W 0 ⊂W 1 ⊂ ... ⊂W s = W , the filtration of W = W1 given by
condition T.3 of Definition 3.2. Then we have f2 = (0, (f2)1) and (f2)1(W 1) = 0.
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In general fr = (0, (fr)1) and (fr)1(W r−1) = 0, therefore fs+1 = (0, (fs+1)1) and
(fs+1)1(W s) = (fs+1)1(W ) = 0. Consequently fs+1 = 0. �

Proposition 3.6. Suppose A = (R,W, δ) is a triangular minimal tbocs, then an
object M ∈ RepA is indecomposable if and only if RM is indecomposable.

Proof. If M is indecomposable in RepA, clearly RM is indecomposable. Sup-
pose now that RM is indecomposable. Take f = (f0, f1) an idempotent element
in EndA(M). Then (f0)2 = f0, thus f0 = 0 or f0 = idM . In the first case
f = (0, f1), thus f is nilpotent, then since f is also idempotent we conclude that
f = 0. In the second case f is an isomorphism therefore there is a g ∈ EndA(M)
with fg = gf = idM . Then idM = fg = f2g = f(fg) = f . Therefore M is
indecomposable in RepA. This proves our result. �

For A = (R,W, δ) a minimal tbocs, take 1R =
∑n

i=1 ei a decomposition of 1R as
a sum of central primitive orthogonal idempotents.

Proposition 3.7. Suppose A = (R,W, δ) is a minimal triangular tbocs. Then if
M ∈ RepA is indecomposable there is an ei with eiM = M

Proof. Here R ∼= Re1 × ... × Ren, if M is an indecomposale R-module then
eiM = M for some ei. Our result follows from our previous proposition. �

4. Reduction Functors

In this section we study full and faithful functors F : RepB → RepA which have
been considered in [1].

Let R be a k-algebra, we recall from [1] that X a left R-module is called R−RX

admissible if RX is a k-subalgebra of EndR(X)op such that EndR(X)op = RX ⊕R
as RX -bimodules with R an ideal of EndR(X)op, finitely generated projective as
right RX -module, and X finitely generated projective as right RX -module. We
have X∗ = HomRX

(XRX
, RX) is a RX−R-bimodule and R∗ = HomRX

(RRX
, RX)

is a RX -bimodule. Take dual bases {pj , γj} for R and {xi, ui} for X as right
RX -modules.

We have morphisms

e : X → X ⊗RX
R∗, a : X∗ → R∗ ⊗RX

X∗

such that for u ∈ X∗, x ∈ X, we have

e(x) = −
∑

j

pj(x)⊗ γj , a(u) =
∑
i,j

u(pj(xi))γj ⊗ ui.

LetA = (R,W, δ) be a tbocs andX a R−RX admissible left R-module. Consider
theRX -bimodules (WX)0 = X∗⊗RX

W0⊗RX
X, (WX)1 = (X∗⊗RX

W1⊗RX
X)⊕R∗.

For u ∈ X∗ and v ∈ X we have k-linear maps:

φ0
u,v : R→ RX ,

for n ≥ 1:
φn

u,v : W⊗n

→ TRX
(WX)

given by φ0
u,v(r) = u(rv), φn

u,v(w1 ⊗ w2 ⊗ ...⊗ wn) =∑
i1,i2,...,in−1

u⊗ w1 ⊗ xi1 ⊗ ui1 ⊗ w2 ⊗ xi2 ⊗ ui2 ⊗ ...⊗ xin−1 ⊗ uin−1 ⊗ wn ⊗ v.
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These morphisms determine a k-linear map:

φu,v : TR(W ) → TRX
(WX),

such that for λ1, λ2 ∈ TR(W ) we have φu,v(λ1λ2) =
∑

i φu,xi
(λ1)φui,v(λ2). For

u ∈ X∗, v ∈ X we put for λ ∈ TR(W ), φa(u),v(λ) =
∑

i,j u(pj(xi))γjφui,v(λ) and
φu,e(v)(λ) = −

∑
j φu,pj(x)(λ)γj .

There is a differential δX in TRX
(WX) with δ2X = 0, and such that for t a

homogeneous element in TR(W )1 = W ⊕W⊗2 ⊕ ... and u ∈ X∗, v ∈ X

(∗) δX(φu,v(t)) = φa(u),v(t) + φu,v(δ(t)) + (−1)degtφu,e(v)(t).

For r ∈ R, u ∈ X∗, v ∈ X, we have:

φa(u),v(r) + φu,e(v)(r) =
∑
i,j

u(pj(xi))γjui(rv)−
∑

j

u(rpj(v))γj

=
∑
i,j

u(pj(xiui(rv)γj −
∑

j

u(pj(rv)γj = 0.

Thus the equality (∗) holds also for r ∈ R and consequently for any t ∈ A(A).
We have a tbocs AX = (RX ,WX , δX). Moreover there is a functor FX :

RepAX → RepA, such that for M ∈ RepAX , FX(M) = X ⊗RX
M as R-modules

and for w ∈ W0, w(x ⊗ m) =
∑

i xi ⊗ φui,x(w)m. For f = (f0, f1) : M → N a
morphism in RepA, FX(f) is given for x⊗m ∈ X ⊗RX

M,w ∈W1 by:

FX(f)0(x⊗m) = x⊗ f0(m) +
∑

j

pj(x)⊗ f1(γj)(m)

FX(f)1(w)(x⊗m) =
∑

i

f1(ui ⊗ w ⊗ x)(m).

Remark 4.1. We recall from Proposition 5.3 of [1] that an object L ∈ RepA is
isomorphic to some FX(M) iff RL ∼= X⊗RX

L′ as R-modules for some RX-module
L′ . Observe that, in the above, if γ ∈ TR(W ) is an element of degree 0 then
γx⊗m =

∑
i xi ⊗ φui,x(γ)m.

If (f, 0) : M → N is a morphism in RepAX , then FX((f, 0)) = (g, 0). Conse-
quently FX induces a functor FX

0 : ModA(AX) → ModA(A) such that FXIAX
∼=

IAF
X
0 . Here RF

X
0 (M) ∼= X⊗RX

M , then FX
0 is a right exact functor which conmuts

with arbitrary direct sums, then FX
0
∼= Y ⊗A(AX) − with Y the A(A) − A(AX)-

bimodule FX
0 (A(AX)). Thus RY ∼= X ⊗RX

A(AX) which is a finitely generated
projective right A(AX)-module. Thus Y is an A(A) − A(AX)-bimodule projective
finitely generated on the right side.

Proposition 4.2. Suppose A = (R,W, δ) is a weak triangular tbocs, then AX =
(RX ,WX ; δX) is a weak triangular tbocs.

Proof. Consider W 0
0 ⊂ ... ⊂ W r0

0 = W0 and (W1)0 ⊂ ... ⊂ W r1
1 = W1 the

corresponding filtrations given by the triangularity of A.
We denote by Bs(i, v, j) the RX -bimodule generated by the elements of the form

f ⊗ w ⊗ x with f ∈ X∗
i , w ∈W v

s , x ∈ Xj .
We define

(WX)m
0 =

∑
i+2lv+j≤m

B0(i, v, j),
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(WX)m+l
1 =

∑
i+2lv+j≤m

B1(i, v, j)⊕R∗,

(WX)i
1 = R∗

i for i ≤ l.

As in [1] one can see, that AX = (RX ,WX , δX) is a weak triangular tbocs with
filtrations

0 = (WX)00 ⊂ ... ⊂ (WX)2l(1+r0)
0 = (WX)0

0 = (WX)01 ⊂ ... ⊂ (WX)2l(1+r1)+l
1 = (WX)1.

�

In the rest of this section we see a very useful reduction functor introduced
originally in [7]. For this, let A = (R,W, δ) be a tbocs with R a minimal k-
algebra. Suppose 1 =

∑n
i=1 ei is a decomposition into central primitive orthogonal

idempotents, and eiR = k[x]fi(x) for i = 1, .., t, ejR = k for j = t+ 1, ..., n,
Now fix a natural number d and elements g1, ..., gt ∈ k[x], with (gi, fi) = 1 for

i = 1, ..., t.
For p a monic irreducible factor of gi, 1 ≤ i ≤ t we put Zi(p) = eiR/(p) ⊕ ... ⊕

eiR/(pd). For 1 ≤ i ≤ t we put Zi = ⊕p∈I(gi)Zi(p), where I(gi) is the set of monic
irreducible factors of gi. For i = t + 1, ..., t + n we put Zi = eiR = eik. The
R-module Z = ⊕iZi is basic with Endop

R (Z) = SZ ⊕R and R = radEndop
R (Z).

We consider now R′ = (e1R)g1 × ... × (etR)gt
, clearly we have an epimorphism

in the category of rings R→ R′ and HomR(Z,R′) = 0, HomR(R′, Z) = 0. Then if
X = Z ⊕R′, we have a full and faithful functor:

FX : RepAX → RepA,
with AX = (RX ,WX , δX) and RX = SZ ×R′.

The decomposition of Z into the direct sum of indecomposable R-modules of
the form (eiR)/(pu) with 1 ≤ i ≤ t and eiR with i > t, and the decomposition of
R′ into the direct sum of R-modules of the form (eiR)gi , with 1 ≤ i ≤ t, gives a
decomposition of R′ into the direct sum of R-modules Xj . For each Xj we have
the idempotent e(Xj) which is the composition of the projection of X on Xj with
the corresponding canonical inclusion in X.

For 1 ≤ i ≤ t and 1 ≤ u ≤ d we put eu
i (p) = e((eiR)/(pu)), for pmonic irreducible

factor of gi, and e0i = e((eiR)gi). For t+ 1 ≤ i ≤ t+ n we put ei = e(eiR).
The identity 1X of RX has the following decomposition into central primitive

orthogonal idempotents:

1X =
t∑

i=1

e0i +
t∑

i=1

∑
p∈I(gi)

d∑
u=1

eu
i (p) +

t+n∑
i=t+1

ei.

We have e0iRX = (eiRX)gi for 1 ≤ i ≤ t; eu
i (p)RX = keu

i (p) for 1 ≤ i ≤ t;
eiRX = kei, for t+ 1 ≤ i ≤ t+ n. Therefore RX is a minimal k-algebra.

We recall that (WX)0 = X∗ ⊗R W0 ⊗R X. For 1 ≤ i, j ≤ t we have:
(1) e0i (WX)0e0j = (eiR)gi

⊗R eiW0ej ⊗R (ejR)gj
;

(2) e0i (WX)0eu
j (p) = (eiR)gi

⊗R eiWoej ⊗R (ejR)/(pu);
(3) eu

i (p)(WX)0e0j = (eiR)/(pu))∗ ⊗R eiWoej ⊗R (ejR)gj ;
(4) eu

i (p)(WX)0ev
j (q) = (eiR)/(pu))∗ ⊗R eiWoej ⊗R (ejR)/(qv).

For 1 ≤ i ≤ t; t+ 1 ≤ j ≤ t+ n we have :
(5) e0i (WX)0ej

∼= (eiR)gi
⊗R eiW0ej ;
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(6) ej(WX)0)e0i ∼= ejW0ei ⊗R (eiR)gi ;
(7) eu

i (p)(WX)0)ej
∼= (eiR/(pu))∗ ⊗R eiW0ej ;

(8) ej(WX)0)eu
i (p) ∼= ejW0ei ⊗R (eiR/(pu).

Finally for t+ 1 ≤ i ≤ n we obtain:
(9) ei(WX)0ej

∼= eiW0ej .
The reduction functor FX : RepAX → RepA will be called a (d, g1, ..., gt)-

unravelling.

Definition 4.3. For A = (R,W, δ) a tbocs, an object M ∈ RepA is an R − E-
bimodule with E = EndA(M)op and the right action of E on M given by m.f =
f0(m) for m ∈ M,f = (f0, f1) ∈ E. Then M is called endofinite if the length of
M as right E-module is finite, we will denote by endolM the length of M as right
E-module.

Suppose now that M is an endofinite object in RepA. Then if 1 =
∑

i ei is a de-
composition into central primitive orhogonal idempotents of R, each eiM is a R−E-
bimodule and M = ⊕ieiM as R−E-bimodules, thus endolM =

∑
i length(eiME).

Assume that eiR = Ri = k[x]h, then E ⊂ EndRi(eiM) = Ei. Then the
length(eiM))Ei ≤ length((eiM)E). Thus if M is endofinite, eiM is a endofinite
Ri-module. Therefore eiMRi

∼=
∑

j∈J Lj with Lj indecomposable Ri-modules and
in the set {Lj} there are only a finite number of isomorphism classes. The only
endofinite indecomposables Ri-modules are k(x) and k[x]/(x−λ)m with λ ∈ S(Ri),
here m ≤ endolM .

Lemma 4.4. If FX : RepAX → RepA is a (d, g1, ..., gt) unravelling, for each
endofinite object N ∈ RepA with endolN ≤ d, there is a M ∈ RepAX endofinite
with endolM ≤ endolN and F (M) ∼= N .

Proof. From the above considerations it follows that for N ∈ RepA with
endolN ≤ d, there is a M ∈ RepAX with F (M) ∼= N . We will assume that
F (M) = N . Take EM = EndAX (M)op and EN = EndA(N)op. There is an
isomorphism of k-algebras φ : EM → EN induced by the functor FX . Take
R = radEndR(X)op and an integer l with Rl = 0.

We have a filtration F of R-modules of X ⊗RX
M = N :

Nl−1 = Rl−1X ⊗RX
M ⊂ ... ⊂ N1 = RX ⊗RX

M ⊂ N0 = X ⊗RX
M.

Clearly F is a filtration of R-modules. The ring EM also acts on N by f(x⊗ n) =
x ⊗ nf = x ⊗ f0(n) for f = (f0, f1) ∈ EN . The filtration F is also a filtration of
R− EN -bimodules. Now observe that for n ∈ Nl−1, f ∈ EN , we have nf = nφ(f).
The same happen for n ∈ Ni/Ni+1 for i = 0, ..., l − 2. Then the EN length of N is
equal to the length ofN as EM -module. Now we recall that there is a decomposition
X = ⊕s

i=1Xi with the Xi indecomposables pairwise nonisomorphic. Take fi the
composition of the projection on the i-th summand followed of the corresponding
injection. Then we have 1X =

∑s
i=1 fi a decomposition into primitive orthogonal

idempotents, Xfi = Xi. Here we have that X is projective finitely generated as
right RX -module, then each Xi is RX projective, then Xi

∼= nifiRX and ni 6= 0.
Then

endolN = lengthEM
N = lengthEM

X ⊗RX
M =

s∑
i=1

lengthEM
nifiM
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≥
s∑

i=1

lengthEM
fiM = lengthEM

M = endolM.

This proves our claim. �

Definition 4.5. Let R be a minimal k-algebra. Suppose 1 =
∑n

i=1 ei is a de-
composition into central primitive orthogonal idempotents, and eiR = k[x]fi(x) for
i = 1, .., t, ejR = k for j = t + 1, ..., n, we say that a R-bimodule U is thin if
eiUej = 0 for i ≤ t and j ≤ t. A tbocs A = (R,W, δ) is called thin if W0 is a thin
R-bimodule.

Observe that having in account the above relations 1-9, if A is a thin tbocs, and
FX : RepAX → RepA is a (d, g1, ..., gt)-unravelling, then AX is also a thin tbocs.

Let S be a k-subalgebra of R, we recall that U a R-bimodule is called S- free
if there is a S-subimodule Û of U such that the morphism of R-bimodules µU :
R⊗S Û ⊗S R→ U given by µU (r1 ⊗ u⊗ r2) = r1ur2 is an isomorphism.

Lemma 4.6. Suppose U is a thin R-bimodule, then U is S-free if for all 1 ≤ i ≤ t,
Uei is free as right eiR-module and eiU is free as left eiR-module.

Proof. Observe that Uei is free as right eiR-module iff it is S free as R-bimodule.
Similarly eiU is free as left eiR-module iff it is S-free as a R-bimodule. Therefore
if the hypothesis of the proposition holds, then for each 1 ≤ i ≤ t there are S-
subbimodules Vi of Uei and iV of eiU , such that the morphisms: µVi

: R⊗S Vi ⊗S

R→ Uei and µ : R⊗S (iV )⊗S R→ eiU are isomorphisms.
For V0 =

∑
i,j≥t+1 eiUej , the morphism µV0 : R⊗S V0⊗SR→

∑
i,j≥t+1 eiUej is

clearly an isomorphism. Consequently, if V =
∑

i(Vi +iV )+V0, then the morphism
µV : R ⊗S V ⊗S R → U , is an isomorphim. Therefore V is a S-free generator for
the R-bimodule U . �

Definition 4.7. Let U be a R-bimodule, a filtration U1 ⊂ ... ⊂ Ur = U is called
a S-free filtration if for u = 1, ..., r there are S-free generators V u of Uu such that
V 1 ⊂ ... ⊂ V r.

The following is clear.

Lemma 4.8. Let U be a thin R-bimodule, suppose that for 1 ≤ i ≤ t there are
S-free filtrations U1

i ⊂ ...Ur
i = Uei, iU

1 ⊂ ... ⊂i U
r = eiU , and U1

0 ⊂ ... ⊂ Ur
0 =∑

i,j≥t+1 eiUej, then if for 1 ≤ u ≤ r, Uu =
∑

i≤t(U
u
i +i U

u) + Uu
0 ,

U1 ⊂ ... ⊂ Ur = U

is a S-free filtration for U .

Proposition 4.9. Let A = (R,W, δ) be a thin weak triangular tbocs, then there is
a (d, g1, ..., gt)- unravelling,

FX : RepAX → RepA

such that AX is a thin triangular tbocs.

Proof. Here A is weak triangular, we have a filtration

w : 0 = W 0
0 ⊂W 1

0 ⊂ ... ⊂W r
0 = W0
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satisfying the condition T.1 of Definition 3.2. There are elements g1, ..., gt such
that for 1 ≤ i ≤ t, 1 ≤ u ≤ r, (eiR)gi ⊗R Wu

0 and Wu
0 ⊗R (eiR)gi are free left

(eiR)gi
-modules and free right (eiR)gi

-modules respectively, and for 1 ≤ u ≤ r− 1,
(eiR)gi ⊗R Wu−1

0 is a direct summand as left (eiR)gi -module of (eiR)gi ⊗R Wu
0

and Wu−1
0 ⊗R (eiR)gi

is a summand as right (eiR)gi
-module of Wu

0 ⊗R (eiR)gi
.

Now S = S0 × S1 with S0 =
∑

i>t eik and S1 =
∑

i≤t eik. Here W0 is thin,
S1W

u
0 ⊗R (eiR)gi

= 0 and (eiR)gi
⊗R Wu

0 S1 = 0. Thus each Wu
0 ⊗R (eiR)gi

is
a S0 − (eiR)gi-bimodule, therefore there are S0-left modules Ŵu

i -submodules of
Wu

0 ⊗R (eiR)gi
) such that, Ŵu−1

i ⊂ Ŵu
i and the morphisms

µi,u : Ŵu
i ⊗k (eiR)gi →Wu

0 ⊗R (eiR)gi , µi,u(w ⊗ f) = wf,

are isomorphisms. Similarly, there is a S0-right submodule iŴ
u of (eiR)gi

⊗R Wu
0

such that iŴ
u−1 ⊂i Ŵ

u and

νi,u : (eiR)gi ⊗k
ˆ

iW
u
→ (eiR)gi ⊗R Wu

0 , νi,u(f ⊗ w) = fw,

is an isomorphism.
Take now the (d, g1, ..., gt)-unravelling, FX : RepAX → RepA. Then there is a

filtration of (WX)0:

0 = (WX)00 ⊂ (WX)10 ⊂ ... ⊂ (WX)2(r+1)
0 = (WX)0

having condition T.1 of Definition 3.2.
We define:

(SX)0 =
∑
i>t

eik, (SX)1 =
∑
i≤t

e0i k, (SX)2 =
∑
i≤t

∑
p∈I(gi)

t∑
u=1

eu
i (p)k.

Then we have SX = (SX)0 × (SX)1 × (SX)2, (SX) ∼= S0, (SX)1 ∼= S1 and
RX = (SX)0 × (SX)2 ×R′ with (SX)1 ⊂ R′ =

∑
i≤t e

0
iRX .

Each Wu
0 ⊗R (eiR)gi

is a S0 − (eiR)gi
-bimodule.

Through the projection RX → (SX)0 followed by the isomorphism (SX)0 → S0

and the projection RX → (eiR)gi
, Wu

0 ⊗R (eiR)gi
becomes a RX -bimodule.

Moreover we have the commutative diagram:

Ŵu
i ⊗k (eiR)gi

µi,u−−−−→ Wu
0 ⊗R (eiR)gi

∼=
y y=

RX ⊗SX
Ŵu

i ⊗SX
RX

µW u
0−−−−→ Wu

0 ⊗R (eiR)gi ,

therefore Ŵu
i is a SX -free generator of the RX -bimodule Wu

0 ⊗R (eiR)gi
.

For 2l(s+ 1) ≤ m ≤ 2l(s+ 2)− 1 there is an isomorphism of RX -bimodules:

(WX)m
0 e

0
i

φm→ (W s
0 ei)⊗R (eiR)gi

.

Then V m
i := φ−1

m (Ŵ s
i ) is a SX -free generator of (WX)m

0 e
0
i .

We have the following commutativity diagram:

(WX)m
0 e

0
i

φm−−−−→ (W s
0 ei)⊗R (eiR)giy y

(WX)m+1
0 e0i

φm+1−−−−→ (W s′

0 ei)⊗R (eiR)gi
,
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with s′ = s+1 if m = 2l(s+2)−1 and s′ = s otherwise. Thus we have V m
i ⊂ V m+1

i ,
and consequently the filtration

(WX)10e
0
i ⊂ .... ⊂ (WX)2l(r+1)

0 e0i = (WX)0e0i
is a SX -free filtration. In a similar way one can prove that the filtration

e0i (WX)10 ⊂ .... ⊂ e0i (WX)2l(r+1)
0 = e0i (WX)0,

is also a SX -free filtration. Therefore by Lemma 4.8 the filtration w is a SX -free
filtration. Clearly (WX)1 is a SX -free R-bimodule, therefore our tbocs AX is free
triangular. �

Proposition 4.10. Let A = (R,W, δ) be a thin free triangular tbocs, which is not
of wild representation type, then given a natural number d, there is a finite set of
full and faithful functors Fi : RepBi → RepA, i = 1, ...,m such that:
i) each Bi = (Ri,W

i, δi) is a minimal triangular tbocs;
ii) for M ∈ RepA with endolM ≤ d, there is an i ∈ {1, ...,m} and N ∈ RepBi

with Fi(N) ∼= M ;
iii) for each i ∈ {1, ...,m} there is a A(A) − Ri-bimodule Yi, projective finitely
generated over the right side such that

FiIBi
∼= IA(Yi ⊗Ri

−).

Proof. By Proposition 4.9 there is a functor FX : RepAX → RepA, given by
a (d, g1, ..., gt)-unravelling such that AX is a free triangular tbocs. Moreover for
M with endolM ≤ d there is a N ∈ RepAX with FX(N) ∼= M . Since A is not
of wild representation type then AX is not of wild representation type. Therefore
by [8] or by Theorem 11.1 of [4] there is a finite set of full and faithful functors
Gi : RepBi → RepAX satisfying conditions i), ii) and iii). Then using Lemma
4.4 and the second part of Remark 4.1 the full and faithful functors Fi = FXGi :
RepBi → RepA satisfy i), ii) and iii). �

Remark 4.11. With the notation of Proposition 4.10 suppose 1R =
∑s

i=1 ei is a
decomposition into central primitive orthogonal idempotents. We consider D(A) =
Qs, for M ∈ repA we put dimM = (dimke1M, ...,dimkesM).

For i = 1, ..., t, Ri is a minimal k-algebra thus we have a decomposition of 1Ri =∑s(j)
j fi,j with fi,j , j = 1, ..., s(j) a set of central primitive orthogonal idempotents.
The functor Fi : RepBi → RepA determines a k-linear map tFi

: D(Bi) → D(A)
such that for M ∈ repBi we have dimFi(M) = tFi

(dimM).

5. A category of morphisms

Let A = (R,W, δ) be a minimal triangular tbocs. Supose 1R =
∑n

j=1 ej with
{ej}n

j=1 central primitive orthogonal idempotents in R, now assume that e =
∑t

j

with t < n is such that eR = Re = eRe is a semisimple k-algebra, we denote
f =

∑
j>t ej . From the triangularity condition T.3 of Definition 3.2 we have a

filtration 0 ⊂W 1 ⊂ .... ⊂Wm = W .
We will consider the following category of radical morphisms in RepA, M.
The objects of M are the radical morphisms φ : X → Y with fX = 0. The

morphisms from φ : X → Y to φ′ : X ′ → Y ′ two objects of M, are given by pairs
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of morphisms u = (u1, u2), u1 : X → X ′, u2 : Y → Y ′, morphisms in RepA such
that u2φ = φu1.

If v = (v1, v2) is a morphism from φ′ : X ′ → Y ′ to φ′′ : X ′′ → Y ′′, then
vu = (v1u1, v2u2). Observe that if φ : X → Y is a morphism object of M, then
this morphism has the form φ = (0, φ1).

Clearly M is a category, we shall see that this category is equivalent to the
category of representations of a triangular tbocs.

We first describe the morphisms in the category A.
Suppose u = (u1, u2) : φ → φ′ is a morphism in M with φ = (0, φ1) : X → Y ,

φ′ = (0, (φ′)1) : X ′ → Y ′. Here u1 = (u0
1, u

1
1), u2 = (u0

2, u
1
2), u2φ = φ′u1.

For w ∈W1 = W with δ(w) =
∑

s w
1
s ⊗ w2

s we have:

(φ′)1(w)u0
1 +

∑
s

(φ′)1(w1
s)u1

1(w
2
s) = u0

2φ
1(w) +

∑
s

u1
1(w

1
s)φ1(w2

s).

For w ∈W , x ∈ X,

φ1(wf)(x) = φ1(fx) = 0, therefore φ1(w) = φ1(we).

In a similar way we have (φ′)1(w) = (φ′)1(we). Moreover :

u1
1(fw)(x) = fu1

1(w)(x) = 0, u1
1(wf)(x) = u1

1(fx) = 0,

therefore u1
1(w) = u1

1(ewe).
Then for w ∈W with δ(w) =

∑
s w

1
s ⊗ w2

s , we have:

(2) (φ′)1(we)u0
1 − u0

2φ
1(we) =

∑
s

u1
1(w

1
s)φ1(w2

se)−
∑

s

(φ′)1(w1
se)u

1
1(ew

2
se).

Now in order to describe the category M in terms of a tbocs we introduce the
following triangular tbocs, B = (S,WB, δB), with

S =
(
R 0
0 eRe

)
, (WB)0 =

(
0 We
0 0

)
, (WB)1 =

(
W 0
0 eWe

)
.

For w ∈W with δ(w) =
∑

s w
1
s ⊗ w2

s we put

δB

(
0 we
0 0

)
=

∑
s

(
0 w1

s

0 0

)
⊗

(
0 w2

se
0 0

)
−

(
0 w1

se
0 0

)
⊗

(
0 0
0 ew2

se

)

=
∑

s

(
0 w1

s ⊗ w2
se− w1

se⊗ ew2
se

0 0

)
.

δB

(
w 0
0 0

)
=

(
w1

s 0
0 0

)
⊗

(
w2

s 0
0 0

)
=

∑
s

(
w1

s ⊗ w2
s 0

0 0

)
,

δB

(
0 0
0 ewe

)
=

∑
s

(
0 0
0 ew1

se

)
⊗

(
0 0
0 ew2

se

)
=

∑
s

(
0 0
0 ew1

se⊗ ew2
se

)
,

using Leibnitz rule one can extend δB to a function δB : TR(W ) → TR(W ), in order
to see that δ2B = 0, it is enough to prove that for w ∈W we have:

δ2B

(
0 we
0 0

)
= 0, δ2B

(
w 0
0 0

)
= 0, δ2B

(
0 0
0 ewe

)
= 0.
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Take w ∈ W with δ(w) =
∑

s w
1
s ⊗ w2

s and δ(w1
s) =

∑
j w

1,1
s,j ⊗ w1,2

s,j , δ(w2
s) =∑

j w
2,1
s,j ⊗ w2,2

s,j . From δ2 = 0 we obtain:

(1)
∑
s,j

w1,1
s,j ⊗ w1,2

s,j ⊗ w2
s −

∑
s,j

w1
s ⊗ w2,1

s,j ⊗ w2,2
s,j = 0.

Taking δ2B

(
0 we
0 0

)
=

(
0 u
0 0

)
, we have:

u =
∑
s,j

w1,1
s,j ⊗ w1,2

s,j ⊗ w2
se−

∑
s,j

w1
s ⊗ w2,1

s,j ⊗ w2,2
s,j e

+
∑
s,j

w1,1
s,j ⊗ w1,2

s,j e⊗ ew2
se−

∑
s,j

w1
s ⊗ w2,1

s,j e⊗ ew2,2
s,j e

+
∑
s,j

w1,1
s,j e⊗ ew1,2

s,j e⊗ ew2
se−

∑
s,j

w1
se⊗ ew2,1

s,j e⊗ ew2,2
s,j e.

Now taking the projections W ⊗RW ⊗RW ⊗RW →W ⊗RW ⊗RW ⊗RWe, given
by w1⊗w2⊗w3 → w1⊗w2⊗w3e; W⊗RW⊗RW⊗RW →W⊗RW⊗RWe⊗R eWe
given by w1 ⊗ w2 ⊗ w3 → w1 ⊗ w2e⊗ ew3e and W ⊗R W ⊗R W ⊗R W → We⊗R

eWe⊗R eWe⊗R eWe given by w1⊗w2⊗w3 → w1e⊗ ew2e⊗ ew3e of (1) we obtain
that u = 0.

In a similar way we obtain the second and thirth equalities.

Proposition 5.1. The tbocs B = (S,WB, δB) is a weak thin triangular tbocs.

Proof. Here A = (R,W, δ) is triangular, by definition there is a basic semisim-

ple k-subalgebra R0 of R. Then S0 =
(
R0 0
0 eR0e

)
is a basic semisimple k-

subalgebra of S. We have filtrations {0} ⊂ (WB)1i ⊂ (WB)1i ⊂ ... ⊂ (WB)m
i =

(WB)i, for i = 0, 1, with

(WB)i
0 =

(
0 W ie
0 0

)
, (WB)i

1 =
(
W i 0
0 eW ie

)
.

Then B satisfies condition T.1, and T.3 of Definition 3.2. Now there is a R0 − R0

subimodule Ŵ of W such that W ∼= R ⊗R0 Ŵ ⊗R0 R. Then eWe ∼= eRe ⊗eR0e

eŴe⊗eR0e eRe, therefore:

S ⊗S0

(
Ŵ 0
0 eŴe

)
⊗S0 S

∼=
(
W 0
0 eWe

)
.

Thus we also have condition T.4 of Definition 2.1. This proves our result.

Theorem 5.2. There exists a functor F : RepB → M which is an equivalence of
categories.

Proof. We have A(B) = TS((WB)0) =
(
R We
0 eRe

)
. We have in A(B) the

idempotents η =
(

1R 0
0 0

)
, σ =

(
0 0
0 e

)
. Take V ∈ RepB, here V is an

A(B)-module then V = ηV ⊕ σV as k-modules. Here V1 = ηV is a R-module and
V2 = σV is a eRe-module. The action of A(B) on V induces a morphism of R-
modules: h : We⊗eReV2 → V1. Conversely if V1 is a R-module, V2 is a eRe-module
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and h : We⊗eReV2 → V1 a morphism of R-modules the triple (V1, V2;h) determines
an A(B)-module V .

We recall we have an isomorphism

ψ : HomR(We⊗eRe V2, V1) → HomR−eRe(We,Homk(V2, V1)).

Then if V ∈ RepB is given by the triple (V1, V2;h) we define
F (V ) = φ = (0, φ1) : V2 → V1 with φ1 = ψ(h)τ ∈ HomR−eRe(We,Homk(V2, V1))
= HomR−R(We,Homk(V2, V1)), where τ is the inclusion of We in W . Clearly φ is
a morphism in A which is an object in M.

Now take z : V → V ′ a morphism in RepB, z = (z0, z1). Here z0 is a morphism
of S-modules from V to V ′, then z0 = (z0

1 , z
0
2) with z0

1 : V1 → V2 a morphism of
R-modules and z0

2 : V2 → V ′2 a morphism of eRe-modules. On the other hand:

z1 :
(
W 0
0 eWe

)
→ Homk(V, V ′)

is a morphism of S − S-bimodules, therefore z1 = (z1
1 , z

1
2) with

z1
1 : W → Homk(V1, V

′
1) a morphism of R − R-bimodules and z1

2 : eWe →
Homk(V2, V

′
2) a morphism of eRe−eRe-bimodules. Since z : V → V ′ is a morphism

in RepB we have for all we ∈We with δ(w) =
∑

s w
1
s ⊗ w2

s and v1 ∈ V1, v2 ∈ V2:(
0 we
0 0

)
z0

(
v1
v2

)
= z0

(
0 we
0 0

) (
v1
v2

)
+ z1δB

(
0 we
0 0

)
.

Then we obtain: (
h′(w ⊗ z0

2(v2))
0

)
= z0

(
h(w ⊗ v2)

0

)

+
∑

s

z1

[(
w1

s 0
0 0

)
⊗

(
0 w2

se
0 0

)
−

(
0 w2

se
0 0

)
⊗

(
0 0
0 ew2

se

)](
v1
v2

)
,

from here we obtain the equality:

(3) (φ)1(w)(z0
2(v2)) = z0

1(φ1(w)(v2))

+
∑

s

z1
1(w1

s)(φ1(w2
s)(v2))−

∑
s

(φ′)1(w1
se)(z

1
2(ew2

se)(v2)).

We have that u1 = (z0
1 , z

1
1) is a morphism from V1 to V ′1 in RepA, and u2 =

(z0
2 , z

1
2) is a morphism from V2 to V ′2 . Then by (2) we have that u = (u1, u2) is

a morphism from φ = F (V ) to φ′ = F (V ′). We put F (z) = u. Now is clear
that if F (z) = 0, then z = 0. Moreover for any morphism u = (u1, u2) : φ → φ′

u1 = (u0
1, u

1
1), u2 = (u0

2, u
1
2). Here u0

1 ∈ HomR(V1, V
′
1), u0

2 ∈ HomeRe(V2, V
′
2).

Thus the pair (u0
1, u

0
2) define a morphism of S-modules z0 : V → V ′. In a similar

way the pair of morphisms (u1
1, u

1
2) define a morphism of S − S-bimodules z1 :(

W 0
0 eWe

)
→ Homk(V, V ′). Thus we obtain a morphism z = (z0, z1) : V → V ′

in RepB such that F (z) = u.
Now if z : V → V ′ and z′ : V ′ → V ′′ are morphisms then F (z′)F (z) = F (z′z).

Clearly F sends identities into identities and F is a dense functor, this proves our
claim. �
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6. Main Results

This section is devoted to the proofs of Theorem 1.1 and Theorem 1.2. In
the following for P a projective Λ-module we denote by S(P ) the complex with
S(P )1 = P and S(P )i = 0 for i 6= 1. For h : P → P ′ a morphism of Λ-modules
we denote by S(h) : S(P ) → S(P ′) the morphism of complexes given by S(h)1 =
h, S(h)i = 0 for i 6= 1. For n ≥ 1, we consider the following category Mn of
morphisms in C1

n(Proj Λ). The objects ofMn are radical morphisms f : S(P ) → X
in C1

n(Proj Λ) with P a projective Λ-module and X any object in C1
n(Proj Λ). The

morphisms from f : S(P ) → X to f ′ : S(P ′) → X ′ are given by pairs of morphisms
u = (u1, u2), u1 : P → P ′, u2 : X → X ′ such that u2f = f ′S(u1). If u = (u1, u2) is
a morphism from f : S(P ) → X to f ′ : S(P ′) → X ′ and v = (v1, v2) is a morphism
from f ′ : S(P ′) → X ′ to f ′′ : S(P ′′) → X ′′, then vu = (v1u1, v2u2). The identity
morphism in the object f : S(P ) → X is given by the pair (idP , idX).

Proposition 6.1. There is a functor G : Mn → C1
n+1(Proj Λ) which is an equiv-

alence of categories.

Proof. Take f : S(P ) → X an object in Mn. We have the morphism f1 : P →
X1, f is a radical morphism, thus Imf1 ⊂ radX1, moreover f is a morphism of
complexes, we have d1

Xf
1 = f2d1

P = 0. Therefore we have the complex G(f) in
C1

n+1(Proj Λ) given by G(F )i = 0 for i outside the interval [1, ..., n+1], G(f)1 = P ,
G(f)i+1 = Xi for i = 1, ..., n, d1

G(f) = f1, di+1
G(f) = di

X for i = 1, ..., n.
Now if u = (u1, u2) is a morphism from f : S(P ) → X to f ′ : S(P ′) → X ′, we

define G(u) in the following way: G(u)i = 0 for i outside the interval [1, ..., n+ 1],
G(u)1 = u1 : G(f)1 = P → G(f ′)1 = P ′, G(u)i+1 = ui

2 : G(f)i+1 = Xi →
G(f ′)i+1 = (X ′)i for i = 1, ..., n.

We have d1
G(f)G(u)1 = (f ′)1u1 = (u2)1f ′ = G(u)2d1

G(f). For i = 1, ..., n we have
di+1

G(f ′)G(u)i+1 = di
X′ui

2 = ui+1
2 di

X = G(u)i+2di+1
G(f). From here we conclude that

G(u) : G(f) → G(f ′) is a morphism of complexes. We have G(idf ) = idG(f). Now
if v is a morphism from f ′ : S(P ′) → X ′ to f ′′ : S(P ′′) → X ′′, G(v)G(u) = G(vu).
Clearly G is a full, faithful dense functor. �

Definition 6.2. Take X ∈ Cn(Proj Λ). Then EX = EndCn(Proj Λ)(X) acts by the
left on each Xi, we say that X has finite endolength if each Xi has finite length as
EX-left module. We define endol(X) =

∑
i lengthEX

Xi.

Now suppose P1, ..., Pm is a representative system of the isomorphism classes
of the indecomposable projective Λ-modules. For H a Λ-module we put dimH =
(dimkHom(P1,M), ...,dimkHom(Pm,M)).

For the category Cn(proj Λ) we consider c(Cn(proj Λ)) = Qnm. For X ∈
Cn(proj Λ), we put c(X) = (dimX1/radX1; ...; dimXn/radXn).

Let C be a k-category and E a k-algebra, a C − E-object is an object M ∈ C
endowed with a homomorphism of k-algebras αM : E → EndC(M)op. If M and
N are C − E-objects, a morphism of C − E-objects from M to N is a morphism
f : M → N in C such that for all r ∈ E, fαM (r) = αN (r)f . If F : C → D is
a functor and M is a C − E-object, then F (M) is a D − E-object, taking αF (M)

the composition E
αM→ EndC(M)op F→ EndD(F (M))op. Clearly if f : M → N is a

morphism of C −E-objects, F (f) : F (M) → F (N) is a morphism of D−E-objects.
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Example 1
A Cn(Proj Λ) − E-object is a complex X ∈ Cn(Proj Λ) such that each Xi is a

Λ − E-bimodule and for all i ∈ Z, di
X is a morphism of Λ − E-bimodules. If X,Y

are Cn(Proj Λ) − E-objects, a morphism of complexes f : X → Y is a morphism
of Cn(Proj Λ)−E-objects if each f i : Xi → Y i is a morphism of Λ−E-bimodules.

Example 2
Let B and C be full subcategories of a category D, consider M the category of

morphisms f : X → Y in D with X ∈ B, Y ∈ C. Then f : X → Y is aM−E-object
if f is a morphism of D − E-objects. Clearly u = (u1, u2) : (f : X → Y ) → (f ′ :
X ′ → Y ′) is a morphism of M−E-objects if and only if u1 and u2 are morphisms
of D − E-objects.

Example 3
Let A = (R,W, δ) be a tbocs. We say that M is an A − E-bimodule if it is

a RepA − E-object. Then for x ∈ E we have αM (x) = (αM (x)0, αM (x)1). The
A− E-bimodule M is said to be proper if for all x ∈ E, αM (r)1 = 0. In this case
M is an R− E-bimodule with mx = αM (x)0(m). Moreover for a ∈ A(A),m ∈M ,
(am)x = αM (x)0(am) = aαM (x)0(m) = a(mx), consequently M is a A(A) − E-
bimodule. Clearly if M is a A(A)−E-bimodule then M is a proper A−E-bimodule.

If f = (f0, f1) : M → N is a morphism in RepA with M and N proper A− E-
bimodules, then f is a morphism of A−E-bimodules if and only if f0 is a morphism
of R − E-bimodules and for all v ∈ V (A), f1(v) : M → N is a morphism of right
E-modules.

Theorem 6.3. Assume C1
n(proj Λ) is not of wild representation type, then given

a natural number d, there is a finite set of full and faithful functors Gi : RepBi →
C1

n(Proj Λ), i = 1, ..., t, such that:
i) the tbocses Bi = (Ri,W

i, δi) are minimal triangular tbocses;
ii) for i = 1, ..., t there are complexes Yi = (Y j

i ) with Y j
i Λ−Ri bimodules projectives

on both sides and finitely generated over the right side with Fi(N) ∼= Y ⊗Ri N ;
iii) for any X ∈ C1

n(Proj Λ) with endol(X) ≤ d there is a i ∈ {1, ..., t} and a
N ∈ RepBi with Fi(N) ∼= X.

Proof. We prove our claim by induction on n. First we consider the case n = 1.
Clearly C1

1(Proj Λ) ∼= ProjΛ.
Take the tbocs U = (Λ, 0, 0), then RepU = ModΛ. Consider X =Λ Λ, here

EndΛ(X)op ∼= S ⊕ radΛ. We have the tbocs UX = (S,W, δ), where W0 = 0, W1 =
(radΛ)∗ and δ is the extension to TS(W ), using Leibnitz rule, of the comultiplication
(radΛ)∗ → (radΛ)∗⊗S (radΛ)∗. There is a full and faithful functor FX : RepUX →
Mod Λ. For M ∈ RepUX , FX(M) = Λ ⊗S M . The full and faithful functor FX

induces an equivalence FX : RepUX → Proj Λ ∼= C1
1(Proj Λ). Here UX is a

minimal tbocs, thus we have i), X = Λ is a Λ − S-bimodule projective fintely
generated on both sides, thus we have ii), here FX : RepUX → Proj Λ is an
equivalence and then we have iii).

Assume now our result proved for n, we will prove it for n+ 1.
By the induction hypothesis for i = 1, ..., l there are full and faithful functors

Fi : RepAi → C1
n(Proj Λ) with A = (Ri,W

i, δi) minimal tbocses and complexes
Yi of A(A) − Ri-bimodules projectives finitely generated over the right side such
that Y j

i = 0 for j outside the interval [1, n] and Fi(N) ∼= Yi ⊗Ri
N . Moreover if

X ∈ Cn(Proj Λ) and endol(X) ≤ d′, there is a N ∈ RepAi for some i ∈ [1, l] with
Fi(N) ∼= X.
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The functors Fi : RepAi → C1
n(Proj Λ) induce linear transformations tFi :

D(Ai) → Qmn, such that for N ∈ repAi, c(Fi(N)) = tFi(dimN).
Take P a projective indecomposable Λ-module and suppose Z(P, i) ∈ RepA is

such that Fi(Z(P, i)) ∼= S(P ). Then tFi
(dimZ(P, i)) = (dimP/radP ; 0; ...; 0). Take

fi,j the only primitive central idempotent of Ri such that fi,jZ(P, i) 6= 0. Then if
Rifi,j is not k, there are infinitely many non-isomorphic indecomposable objects Ts

in RepAi such that dimTs = dimZ(P, i)). But then applying Fi this implies that
there are infinitely many non-isomorphic indecomposable objects Fi(Ts) in RepA
with dimFi(Ts) = (dimP ; 0; ...; 0), which is not possible. Therefore Rfi,j = k. Take
now fi the sum of all possible fi,j as before. Then Rifi is a semisimple k-algebra.

Now for i ∈ [1, t] take Li the category of radical morphisms u : Z2 → Z1 in
RepAi with fiZ2 = Z2. By Theorem 5.2 there is an equivalence of k-categories
Gi : RepBi → Li, with Bi = (Si,WBi , δBi) a triangular tbocs. Since A is not of
wild representation type then each Bi, i ∈ [1, t] is not of wild representation type.
Then there are full and faithful functors Fi,j : RepAi,j → RepBi for j ∈ [1, l(i)]
with Ai,j = (Si,j ,Wi,j , δi,j) minimal triangular tbocses such that for all M ∈ RepBi

with endol(M) ≤ d′ there is a N ∈ RepAi,j for some j ∈ [1, l(j)] with Fi,j(N) ∼= M .
The functor Fi : RepAi → RepA induces a full and faithful functor F̂i : Li →

Mn, F̂i(u : Z2 → Z1) = Fi(u) : Fi(Z2) → Fi(Z1).
We have the following full and faithful functors:

RepBi,j
Fi,j−→ RepBi

Gi−→ Li
F̂i−→Mn

G−→ C1
n+1(Proj Λ).

We have the proper Bi,j −Ri,j-bimodule Fi,j(Ri,j) = Vi,j . Then Vi,j is a A(Bi,j)−
Ri,j-bimodule. We recall that

A(Bi) =
(
Ri W ifi

0 fiRifi

)
,

Vi,j = (V 1
i,j , V

2
i,j ;hi,j) with V 1

i,j and V 2
i,j Ri − Ri,j-bimodules finitely generated

projectives over the right side. The morphism hi,j : W ifi ⊗Ri
V 2

i,j → V 1
i,j is a

morphism of Ri−Ri,j-bimodules. Then V 1
i,j and V 2

i,j are proper Ai−Ri,j-bimodules
and φi,j = (0, φ1

i,j) : V 2
i,j → V 1

i,j with φ1
i,j(w)(x) = hi,j(w)(m) for w ∈ W i

1, x ∈ V 2
i,j .

Since φi,j is a morphism of Ri − Ri,j-bimodules, hi,j is a morphism of Ai − Ri,j-
bimodules.

By definition Gi(Vi,j) = hi,j : V 2
i,j → V 1

i,j , F̂i(Gi(Vi,j)) = Fi(hi,j) : Yi ⊗Ri V
2
i,j →

Yi ⊗Ri V
1
i,j .

Now fiV
2
i,j = V 2

i,j , then (Yi ⊗Ri
V 2

i,j)
1 = Y 1

i ⊗Ri
V 2

i,j and (Yi ⊗Ri,j
Vi,j)s = 0 for

s 6= 1, (Yi ⊗Ri
V 1

i,j)
s = Y s

i ⊗Ri
V 1

i,j for s ∈ Z, Fi(hi,j)1 = ui,j , Fi(hi,j)s = 0 for
s 6= 1.

For Z = GF̂iGiFi,j(Ri,j) we have Zs = 0 for s outside the interval [1, n + 1],
Z1 = Y 1

i ⊗Ri V
2
i,j , Z2 = Y 1

i ⊗Ri V
1
i,j , ..., Zn+1 = Y n

i ⊗Ri V
1
i,j ; and d1

Z =
ui,j , ds

Z = ds−1
Yi

⊗ 1 for s ∈ [2, n+ 1].
For M ∈ RepBi,j we have GF̂iGiFi,j(M) ∼= Z ⊗Ri,j

M .
We shall see that the functors Hi,j = GF̂iGiFi,j : RepBi,j → C1

n+1(Proj Λ)
satisfy the conditions i), ii) and iii). Here the tbocs Bi,j is triangular minimal,
thus we have i). Now for Z we have that for s ∈ [1, n + 1], Zs is a Λ − Ri,j-
bimodule projective on both sides and finitely generated over the right side and for
M ∈ RepBi,j , Hi,j(M) ∼= Z ⊗Ri,j

M , thus we have ii).
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For proving iii) take X ∈ C1
n+1(Proj Λ) with endol(X) ≤ d. Then X ∼= G(X2

u→
X1) with X2 = S(P ), X1 ∈ C1

n(Proj Λ). Consider E = EndCn(Proj Λ)(X)op, X1

and X2 are Cn(Proj Λ) − E-bimodules and endol(X) = lengthEX1 + lengthEX2.
Then endol(X1) ≤ lengthEX1 and endol(X2) ≤ lengthEX2. Therefore endol(X1 ⊕
X2) ≤ endol(X1) + endol(X2) ≤ d. Then there is an i and N1, N2 ∈ RepAi such
that Fi(N1) ∼= X1, Fi(N2) ∼= X2. Since Fi is a full functor, there is a morphism
v = (0, v1) : N1 → N2 such that Fi(v) is isomorphic to u. The morphism v is
an object of Li. Clearly v is an Li − E-bimodule with F̂i(v) ∼= u. Since Gi is an
equivalence there is a N ∈ Bi with Gi(N) ∼= v. We may assume N = (N1, N2;h),
then endol(N) ≤ endol(N1)+ endol(N2) = endol(X1)+ endol(X2) ≤ d. Then there
is a j and an object M ∈ RepBi,j with Fi,j(M) ∼= N . Therefore Hi,j(M) ∼= X, this
proves iii). �

Proof of Theorem 1.1 Suppose Cm(proj Λ) is not of wild representation type.
Therefore C1

m(proj Λ) is not of wild representation type, consequently by Theorem
6.3, given a non negative integer d, there is a finite set of full and faithful functors
Gi : RepBi → C1

n(Proj Λ), i = 1, ..., t with conditions i), ii) and iii). Using the
notation of Theorem 6.3, for i ∈ {1, ..., t} we consider Ti the set of central primitive
idempotents fi,j in Ri with fi,jRi 6= kfi,j . For each fi,j ∈ Ti we have Y fi,j ∈
C1

n(Proj Λ). Each Y ufi,j is a Λ − Rifi,j bimodule projective finitely generated
as right Rifi,j-module, since Rifi,j is a rational k-algebra, then Y ufi,j is a free
finitely generated right Rifi,j-module. Then for almost all isomorphism classes
[X] of indecomposable objects in Cm(proj Λ) with dimkX ≤ d, we may assume
X ∈ C1

m(proj Λ) and endol(X) = dimkX ≤ d. Therefore for almost all such [X] we
have X ∼= Yi⊗Rifi,j

S(λ) for some λ ∈ k and fi,j ∈ Ti. This proves that Cm(proj Λ)
is of tame representation type. �

The following result implies Theorem 1.2.

Theorem 6.4. Assume that C1
m(proj Λ) is not of wild representation type. Then

given a natural number d for almost all indecomposable object X ∈ C1
m(proj Λ) with

dimkX ≤ d there is an E-almost split sequence:

X → E → X.

Proof. We may assume X is not E-projective then by Theorem 8.5 of [2], there
is an E-almost split sequence:

A(X) → E → X

in C1
m(proj Λ).

We will prove first that there is a constant c(Λ) depending only on the algebra
Λ such that for any Y ∈ C1

m(proj Λ), dimkA(Y ) ≤ c(Λ)dimkY . Take L = dimkΛ,
and the Nakayama functor ν : proj Λ → inj Λ. We recall that if 1 =

∑n
i=1 ei is

a decomposition of the identity of Λ into orthogonal primitive idempotents then
ν(Λei) = D(eiΛ). Therefore if P = ⊕iniΛei, then ν(P ) = ⊕iniD(eiΛ). Thus
dimkν(P ) =

∑
i nidimkD(eiΛ) ≤

∑
i niL ≤ L(

∑
i nidimkΛei) = LdimkP . If W =

(W i, di
W ) is a complex of finitely generated projective Λ- modules then ν(W ) =

(ν(W i), ν(di
W )). If in additionW is a finite complex dimkν(W ) =

∑
i dimkν(W i) ≤

LdimkW .
Now choose a quasi-isomorphism q : Z → τ≤m(ν(X)[−1]), with Z = (Zi, dZ)

such that Imdi
Z ⊂ radZi+1.
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We have dimkH
j(Z) = dimkH

j(τ≤mX[−1]) ≤ LdimkX. Now A(X) ∼= F (Z)
in C1

m(proj Λ), thus dimkA(X) ≤ c(Λ)dimkX with c(Λ) = L(mL + (m − 1)L2 +
...2Lm−1 + Lm). This proves our claim.

Given a natural number d, we take d′ = 2(1 + c(Λ))d. By Theorem 6.3 there
is a finite number of full and faithful functors Fi : RepBi → C1

m(Proj Λ) with
Bi = (Ri,W

i, δi) minimal triangular tbocses such that for any Y ∈ C1
m(Proj Λ)

with endolY ≤ d′ there is a W ∈ RepBi with Fi(W ) ∼= Y . Consider now the family
S of objects in C1

m(proj Λ) which are isomorphic to some Fi(fsRi) with fs central
primitive idempotent of Ri such that fsRi = k. In the above family there is only a
finite number of isomorphism classes.

Take now an indecomposable object X ∈ C1
m(proj Λ) which is not in S with

dimkX ≤ d. Suppose moreover that X is not E-projective. Then there is an
E-almost split sequence:

a Y → E → X,

here endol(X ⊕ E ⊕ Y ) ≤ dimk(X ⊕ E ⊕ Y ) ≤ d′, then there is a U ∈ RepBi

with Fi(U) ∼= (X ⊕ E ⊕ Y ). Therefore there are objects N,M,W in RepBi with
Fi(M) ∼= X,Fi(N) ∼= Y, Fi(W ) ∼= E. Since Fi is full and faithful, thus there is an
almost split sequence N → W → M whose image is isomorphic to a. Here M is
not isomorphic to some fsRi with fs central primitive idempotent of Ri such that
fsRi = k thus N ∼= M which implies that X ∼= Y . �

7. Generic Complexes

Here we consider generic complexes in the sense of section 5 of [16]. For Λ a
derived tame algebra we shall see the relations between one-parameter families of
objects in Db(Λ) and generic complexes in Db(ModΛ).

Definition 7.1. A complex X ∈ Db(ModΛ) is called endofinite if Hi(X) has
finite length as E(X) = EndDb(Mod Λ)(X)-module for all i ∈ Z.

An endofinite complex X is called generic if it is indecomposable and it is not
isomorphic to a bounded complex of finitely presented Λ-modules.

The homology endolength of an endofinite X object of Db(ModΛ) is defined as:

hendolX = (lengthE(X)H
i(X))i∈Z.

Definition 7.2. An infinite family F of pairwise non-isomorphic indecomposable
objects in Db(Λ), (respectively in Cn(modΛ)) is called one-parameter family if there
is a rational k-algebra R and a bounded complex X of Λ−R-bimodules (respectively
X a Cn(Proj Λ)−R-bimodule ) with each Xi is free finitely generated over R, such
for any M ∈ F , there is a λ ∈ S(R) with M ∼= X ⊗R k[x]/(x− λ). We say that F
is parametrized by Y .

If F1 and F2 are two one-parameter families of complexes in Cn(modΛ) the set
F1,2 of those X ∈ F1 such that there is a Y ∈ F2 with X ∼= Y is either finite or
cofinite in F1. The relation between the one-parameter families defined by F1 ≈ F2

if the set F1,2 is infinite is an equivalence relation. We say that F1 is equivalent to
F2 if F1,2 is infinite.

Definition 7.3. If X is a bonded complex of Λ−k(x)-bimodules a realization of X
is a bounded complex Y of Λ−R-bimodules, with R a rational k-algebra such that
X ∼= Y ⊗R k(x) in the category Db(ModΛ).
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Theorem 7.4. Let Λ be a derived tame k-algebra, with k algebraically closed field,
suppose X is a generic complex in Db(ModΛ). Then:
i) X is isomorphic to P a bounded complex of finitely generated Λ−k(x)-bimodules,
moreover hendolX = (dimk(x)H

i(P ));
ii) there is a rational k-algebra R and a complex Y of Λ−R-bimodules free finitely
generated over the rigth side such that Y ⊗R k(x) ∼= X in Db(ModΛ) and Y ⊗R− :
modR→ Db(modΛ) preserves indecomposables and isomorphism classes.
Moreover, if F is a one-parameter family of indecomposable objects in Db(modΛ),
then there is a generic complex X ∈ Db(Mod Λ) and a realization Y of X such that
F is equivalent to a one-parameter family parametrized by Y ⊗R R/(p)n with p a
prime element in R.

Proof. We may assume that for (hi) = hendolX• we have hi = 0 for i ≤ 2
and i > m, h2 6= 0. Take now P ∈ K≤m,b(Proj Λ) quasi-isomorphic to X. Then
Hi(P ) = 0 for i ≤ 2. We have F (P ) is indecomposable in C1

m(Proj Λ), with F the
functor given after Lemma 2.2. Now F (P ) = Q = (Qi, di

Q) is a complex such that
each Qi has finite lengh as EndQ(Q)-module, then Q has endofinite length d. Since
we have an equivalence F : Lm → Cm(ModΛ), Q is a generic object. By Theorem
6.3 there is a full and faithful functor G : RepB → C1

n(Proj Λ) with B = (S,W, δ)
a minimal triangular tbocs and G(M) ∼= Q for some M ∈ RepB. Thus M is a
generic object in RepB, then there is a central primitive idempotent f ∈ S such
that M = k(x)f .

By ii) of Theorem 6.3 there is a complex Z of Λ − S-bimodules projectives on
both sides and finitely generated over the right side such that for all N ∈ RepB,
F (N) ∼= Z ⊗S N , thus Q ∼= Z ⊗S fk(x) ∼= Zf ⊗fSf k(x). Here R = fSf is a
rational k-algebra and Y = Zf is complex of projective right R-module then Y
is a complex of free finitely generated right R-modules. Our complex Y satisfies
the hypothesis of Corollary 2.7, therefore since Q ∼= Y ⊗R k(x), the morphism
d1

Q : Q1 → Q2 is a monomorphism. But d1
P : P 1 → P 2 = d1

Q : Q1 → Q2, then
d1

P is a monomorphism. But H1(P ) = 0, then d0
P = 0, but this implies that

P j = 0 for j ≤ 0, consequently P = Q. We have that the radical of EndB(M)
is nilpotent and EndB(M)/radEndB(M) ∼= k(x), thus for EP = EndCm(Proj Λ)(P )
we have EP /radEP

∼= k(x). From this we obtain i). Since G is a full and faithful
functor, we obtain ii).

For the last statement of our theorem suppose that F is a one-parameter family
in Db(Λ). We may assume that there is a fixed h = (hi) such that for all X ∈ F ,
hdimX = h. By Theorem 2.4 we may assume that all X ∈ C1

m(proj Λ) and there
is a fixed d such that endolX ≤ d. By Theorem 6.3 there are full and faithful
functors Gi : RepBi → C1

m(proj Λ) with Bi = (Ri,Wi, δi) minimal tbocses such
that for all X ∈ F there is a N ∈ RepBi with Fi(N) ∼= X. Moreover there are
complexes Yi such that for M ∈ RepBi, Gi(M) ∼= Yi ⊗Ri M . In C1

m(proj Λ) there
are one-parameter families parametrized by the complexes Yifi,jRi/(p)n with p
prime element of Rifi,j and fi,j central primitive idempotents of Ri with Rifi,j 6=
kfi,j . Almost all objects in F are in one of these one-parameter families, then F is
equivalent with one of these families. This proves our result. �
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