ON DERIVED TAME ALGEBRAS

RAYMUNDO BAUTISTA

ABSTRACT. Let Λ be a finite-dimensional algebra over an algebraically closed field k. We prove that $\mathcal{D}^b(\Lambda)$ the bounded derived category has tame representation type (Λ is called tame derived), if and only if the full subcategory of $\mathcal{D}^b(\Lambda)$ whose objects are perfect complexes is of tame representation type. We see that if Λ is derived tame then, almost all isomorphism classes of indecomposable complexes $X^{\bullet} \in \mathcal{D}^b(\Lambda)$ with fixed homology dimension are perfect and have Auslander-Reiten triangles of the form: $X^{\bullet} \to H^{\bullet} \to X^{\bullet} \to X^{\bullet}[1]$.

1. INTRODUCTION

Let Λ be a finite-dimensional algebra over an algebraically closed field k and $\mathcal{D}^b(\Lambda)$ be its bounded derived category. We consider Mod Λ the category of left Λ -modules. We denote by mod Λ , Proj Λ , proj Λ , Inj Λ and inj Λ the full subcategories of Mod Λ consisting of the finitely generated, the projectives, the finitely generated projectives, the injectives and the finitely generated injectives Λ -modules, respectively. By $\mathcal{D}^b(\operatorname{Mod} \Lambda)$ we denote the bounded derived category of Mod Λ , we recall that $\mathcal{D}^b(\Lambda)$ is the bounded derived category of the category mod Λ . If $X = (X^i, d_X^i)_{i \in \mathbb{Z}}$ is an object in $\mathcal{D}^b(\Lambda)$ an invariant of it is given by its homology dimension $\mathbf{hdim} = (h_i)_{i \in \mathbb{Z}}$ with $h_i = \dim_k H^i(X)$.

A sequence of non negative integers $\mathbf{h} = (h_i)_{i \in \mathbb{Z}}$ is called a homology dimension if for all but finitely many $i, h_i = 0$. We recall that according with [18], $\mathcal{D}^b(\Lambda)$ is called discrete and Λ derived discrete if there are only finitely many isoclasses of indecomposables $X \in \mathcal{D}^b(\Lambda)$ with fixed homology dimension. As for algebras, definitions of tame representation type and of wild representation type has been given in [12] for the category $\mathcal{D}^b(\Lambda)$. The algebra Λ is called derived tame or derived wild if the category $\mathcal{D}^b(\Lambda)$ is of tame representation type or of wild representation type, respectively.

In [18] it has been proved that Λ is derived discrete if and only if $\mathcal{D}^b(\Lambda)_{prf}$, the full subcategory of $\mathcal{D}^b(\Lambda)$ whose objects are the perfect complexes is discrete. We prove that a similar fact is also true for the tame case: Λ is derived tame if and only if $\mathcal{D}^b(\Lambda)_{prf}$ is of tame representation type. In fact we prove that almost all isomorphism classes of indecomposable objects in $\mathcal{D}^b(\Lambda)$ of given homology dimension are isomorphism classes of perfect objects.

Moreover we see that if Λ is derived tame and **h** is a fixed homology dimension, then for almost all isomorphism classes [Y] with Y indecomposable perfect complex with $\mathbf{h}\dim Y = \mathbf{h}$, there is an Auslander-Reiten triangle of the form:

$$Y \to H \to Y \to Y[-1].$$

²⁰⁰⁰ Mathematics Subject Classification, 16G70, 18G35, 18G05.

In addition, if $\mathbf{h} = (h_i)$, $Y = (Y^i, d_Y^i)$ and n_0 is the integer such that $h_{n_0} \neq 0$ and $h_i = 0$ for $i < n_0$, then $Y_j = 0$ for $j \leq n_0 - 1$ and $d_Y^{n_0-1} : Y^{n_0-1} \rightarrow Y^{n_0}$ is a monomorphism. This implies that for Λ derived tame for any fixed non-negative integer, almost all isomorphism classes of indecomposable Λ -modules [M] with $\dim_k M \leq d$, the projective dimension of M is equal to one.

For the proof of the above results, we consider in section 2, $\mathbf{C_m}(\operatorname{proj} \Lambda)$ which is the category of complexes $X = (X^i, d_X^i)$ of finitely generated projective Λ -modules with $X^i = 0$ for i outside the interval [1, ..., m]. We denote by $\mathbf{C_m^1}(\operatorname{proj} \Lambda)$ the full subcategory of $\mathbf{C_m}(\operatorname{proj} \Lambda)$ whose objects are the complexes $X = (X^i, d_X^i)$ such that $\operatorname{Im} d_X^{i-1} \subset \operatorname{rad} X^i$ for all $i \in \mathbb{Z}$.

In general if \mathcal{C} is a k-category a morphism $f: M \to N$ in \mathcal{C} is called radical if for any split monomorphism $\sigma: X \to M$ and any split epimorphism $\pi: M \to Y$, $\pi f \sigma: X \to Y$ is not isomorphism. If P and Q are projective Λ -modules, $f: P \to Q$ is a radical morphism if and only if $\operatorname{Im} f \subset \operatorname{rad} Q$.

In section 6 we prove the following two results.

Theorem 1.1. For fixed m, either $\mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda)$ is of tame representation type or of wild representation type.

The proof of this last result is in fact considered in [5] and [10], using bocses with relations. We present a different proof using just free triangular bocses. We recall from [2] that we have an exact category ($\mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda), \mathcal{E}$) in the sense of [17] or [11], where \mathcal{E} is the class of sequences of morphisms (conflations)

$$X \xrightarrow{u} E \xrightarrow{v} Y$$

such that for all $i \in \mathbb{Z}$ the sequence

$$0 \to X^i \xrightarrow{u^i} E^i \xrightarrow{v^i} Y^i \to 0,$$

is an split exact sequence. The exact category $(\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda), \mathcal{E})$ has enough projectives and injectives and it has almost split sequences.

Theorem 1.2. Suppose $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ is of tame representation type. Then for almost all isomorphism classes [X] of indecomposables with a fixed dimension $d = \dim_k X = \sum_i \dim_k X^i$ in the category $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$, there is an \mathcal{E} -almost split sequence in $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ of the form: $X \to E \to X$.

For this we use in a similar way as in [5] thocses (introduced in [1]).

In section 7 we consider generic complexes in $\mathcal{D}^b(\operatorname{Mod} \Lambda)$ in the sense of section 5 of [16], observe that this definition differs of the one given in [12]. With our definition we obtain similar results to the ones given in [8] for Λ -modules. In particular each generic complex is closely related to an one-parameter family of objects in $\mathcal{D}^b(\Lambda)$. In addition we prove that if X is a generic complex for a derived tame algebra Λ , X is isomorphic in $\mathcal{D}^b(\operatorname{Mod} \Lambda)$ to a bounded complex of projective Λ -modules.

2. Bounded derived categories

Here we see some consequences of Theorems 1.1 and 1.2 for the derived category $\mathcal{D}^b(\Lambda)$.

In the following a rational algebra is a k-algebra of the form: $k[x]_h = \{f/h^m | m \text{ is a positive integer}, f \in k[x]\}, \text{ the support of a rational algebra}$ is defined by $S(k[x]_h) = \{\lambda \in k | h(\lambda) \neq 0\}$. For $\lambda \in S(k[x]_h)$, the simple $k[x]_h$ module $k[x]/(x-\lambda)$ will be denoted by S_{λ} .

For **h** a homology dimension we denote by $\mathcal{V}(\mathbf{h})$ the full subcategory of $\mathcal{D}^b(\Lambda)$ whose objects are indecomposables $X \in \mathcal{D}^b(\Lambda)$ with $\mathbf{h} \dim X = \mathbf{h}$.

We recall the following definitions:

1) A is called *derived discrete* if for each homology dimension **h**, the category $\mathcal{V}(\mathbf{h})$ has only finitely many isomorphism classes.

2) Λ is called *derived tame* if for each homology dimension **h** there is a finite set of rational algebras $R_u, u = 1, ..., s$ and for each u a bounded complex M_u of $\Lambda - R_u$ bimodules free finitely generated over R_u , such that for almost all isomorphism classes [X] with $X \in \mathcal{V}(\mathbf{h})$ there is a $\lambda \in S(R_u)$ with $X \cong M_u \otimes_{R_u} S_\lambda$ for some $u \in \{1, ..., s\}.$

3) Λ is called *derived wild* if there is a bounded complex W of $\Lambda - k < x, y >$ bimodules free finitely generated over k < x, y > such that the functor

$$W \otimes_{k < x, y > -} : \mod k < x, y > \rightarrow \mathcal{D}^b(\Lambda)$$

preserves isoclasses and indecomposables.

Concerning the categories $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ we recall the definitions of finite representation type, tame representation type and wild representation type.

4) $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ is called of *finite representation type* if it has only a finite number of isomorphism classes of indecomposables.

5) $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ is called of *tame representation type* if for any given positive integer d there are rational algebras $R_u, u = 1, ..., s$ and for each u a complex $M_u = (M_u^i, d_{M_u}^i)$ with M_u^i a $\Lambda - R_u$ -bimodule free finitely generated over R_u , projective as Λ -module and $M_u^i = 0$ for *i* outside the interval [1, ..., m], such that for almost all isomorphism class [Y] with Y indecomposable and $\dim_k Y \leq d$ there is a $\lambda \in S(R_u)$ such that $M_u \otimes_{R_u} S_\lambda \cong Y$.

6) $\mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda)$ is called of *wild representation type* if there is a bounded complex of $\Lambda - k < x, y >$ -bimodules free finitely generated over k < x, y >, projectives as A-modules, $W = (W^i, d_W^i)$ with $W^i = 0$ for *i* outside the interval [1, ..., m], such that the functor:

$$W \otimes_{R_u} - : \mod k < x, y > \to \mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$$

preserves isoclasses and indecomposables.

We need the following results.

Lemma 2.1. Suppose $Y = (Y^i, d_Y^i) \in \mathbf{C}^1_{\mathbf{m}}(\operatorname{proj} \Lambda)$ is such that $\dim_k H^j(Y^{\bullet}) \leq c$ for all j and for some $u \in [2, ..., m]$, $\dim_k Y^u \leq d_u$, then $\dim_k Y^{u-1} \leq (d_u + c)L$, with $L = \dim_k \Lambda$.

Proof. We have $\dim_k Y^{u-1}/\operatorname{Ker} d_Y^{u-1} = \dim_k \operatorname{Im} d_Y^{u-1} \leq d_u$, moreover we know that $\dim_k \operatorname{Ker} d_Y^{u-1}/\operatorname{Im} d_Y^{u-2} \leq c$. Therefore $\dim_k Y^{u-1}/\operatorname{Im} d_Y^{u-2} \leq c + d_u$. Here $\operatorname{Im} d_Y^{u-2} \subset \operatorname{rad} Y^{u-1}$, thus $\dim_k Y^{u-1}/\operatorname{rad} Y^{u-1} \leq \dim_k Y^{u-1}/\operatorname{Im} d_Y^{u-2}$. Consequently, $\dim_k Y^{u-1} \leq (c+d_u)L$.

Lemma 2.2. Let $Y^{\bullet} = (Y^i, d_Y^i) \in \mathbf{C}^1_{\mathbf{m}}(\operatorname{proj} \Lambda)$ such that for all j, we have the inequality $\dim_k H^j(Y^{\bullet}) \leq c$ for some fixed c. Then

$$\dim_k Y \le c(mL + (m-1)L^2 + (m-2)L^3 + \dots + 2L^{m-1} + L^m).$$

Proof. Here $Y^{m+1} = 0$, then by our previous lemma, $\dim_k Y^m \leq cL$. Then again by lemma 2.1 we have, $\dim_k Y^{m-1} \leq c(L+L^2)$, $\dim_k Y^{m-2} \leq c(L+L^2+L^3)$, ..., $\dim_k Y^1 \leq c(L+L^2+\ldots+L^m)$. From here we obtain our result. \Box

We denote by $\mathbf{C}^{\leq \mathbf{m},\mathbf{b}}(\operatorname{Proj}\Lambda)$ the category of complexes $X = (X^i, d_X^i)$ with $X^i \in \operatorname{Proj}\Lambda$ and $X^i = 0$ for i > m, such that $H^i(X) = 0$ for almost all i. By $\mathbf{K}^{\leq \mathbf{m},\mathbf{b}}(\operatorname{Proj}\Lambda)$ we denote the corresponding homotopy category.

Following [2] we denote by \mathcal{L}_m the full subcategory of $\mathbf{K}^{\leq \mathbf{m}, \mathbf{b}}(\operatorname{Proj} \Lambda)$ whose object are those X with $H^i(X) = 0$ for $i \leq 1$.

The functor $F: \mathbf{K}^{\leq \mathbf{m}, \mathbf{b}}(\operatorname{Proj} \Lambda) \to C_{\mathbf{m}}(\operatorname{Proj} \Lambda)$ which sends a complex:

$$X: \dots \to X^{-1} \stackrel{d^{-1}}{\to} X^0 \stackrel{d^0}{\to} X^1 \stackrel{d^1}{\to} \dots \to X^m \to 0$$

to

$$F(X) = \dots 0 \to 0 \to X^1 \xrightarrow{d^1} \dots \to X^m \to 0,$$

induces an equivalence:

$$\underline{F}: \mathcal{L}_m \to \overline{\mathbf{C}_{\mathbf{m}}}(\operatorname{Proj} \Lambda),$$

where $\overline{\mathbf{C}_{\mathbf{m}}}(\operatorname{Proj} \Lambda)$ is the category with the same objects as $\mathbf{C}_{\mathbf{m}}(\operatorname{Proj} \Lambda)$ and morphisms those in $\mathbf{C}_{\mathbf{m}}(\operatorname{Proj} \Lambda)$ modulo the ones which are factorized through \mathcal{E} -injective objects (see Corollary 5.7 of [2]).

Moreover we have an embedding

$$\tau^{\geq 1}: \mathcal{L}_m \to \mathcal{D}^b(\operatorname{Mod} \Lambda).$$

Observe that for $P \in \mathcal{L}_m$, $q : P \to \tau^{\geq 1} P$ the natural morphism is a quasiisomorphism.

For a natural number d we denote by \mathcal{F}_d the full subcategory of $\overline{\mathbf{C}_{\mathbf{m}}}(\operatorname{proj} \Lambda)$ whose objects are those indecomposables X with $\dim_k X \leq d$. We denote by \mathcal{U}_d the full subcategory of \mathcal{L}_m whose objects are those $Y \cong F(P)$ with $P \in \mathcal{F}_d$. By \mathcal{V}_d we denote the full subcategory of $\mathcal{D}^b(\Lambda)$ whose objects are those isomorphic to some $\tau^{\geq 1}P$ with $P \in \mathcal{U}_d$.

We have $\mathcal{V}(\mathbf{h}) \subset \mathcal{V}_d$, if $d = |\mathbf{h}|(mL + (m-1)L^2 + ... + 2L^{m-1} + L^m)$ with $|\mathbf{h}| = max\{h_i\}_{i \in \mathbb{Z}}, L = \dim_k \Lambda$.

Theorem 2.3. a) Λ is derived discrete if and only if for all m, $\mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda)$ is of finite representation type;

b) if Λ is derived wild it is not derived tame;

c) if for some m, $\mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda)$ is of wild representation type then Λ is derived wild; d) Λ is derived tame if and only if for all m, $\mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda)$, is of tame representation type;

e) Λ is either derived tame or derived wild (see Bekkert-Drozd [5]).

Proof. Suppose Λ is derived discrete, then by [18] Λ is derived hereditary of Dynkin type or it is a gentle algebra.

For a Krull-Schmidt category C we denote by ind C the full subcategory of C whose objects are the indecomposables of C.

If Λ is hereditary then $C_2(\text{proj }\Lambda)$ is of finite representation type, for m > 2 we have:

 $ind \mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda) \subset ind \mathbf{C}_{\mathbf{2}}(\operatorname{proj} \Lambda) \cup ind \mathbf{C}_{\mathbf{2}}(\operatorname{proj} \Lambda)[1] \cup ... \cup ind \mathbf{C}_{\mathbf{2}}(\operatorname{proj} \Lambda)[m-1]$

then $ind \mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda)$ has only finitely many isomorphism classes, thus it is of finite representation type.

If Λ is derived equivalent to a hereditary algebra A of Dynkin type, there is a bounded complex T over $\Lambda - A$ -bimodules projective finitely generated over both sides such that the functor:

$$-\otimes^{\mathbf{L}} T: \mathcal{D}^b(\Lambda) \to \mathcal{D}^b(A)$$

is an equivalence. Then for m there is a n and a l such that we have a functor:

$$G(-) = - \otimes_{\Lambda} T[l] : \mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda) \to \mathbf{C}_{\mathbf{m}+\mathbf{n}}(\operatorname{proj} A)$$

with the following property: if Y and X are indecomposables in $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ which are not \mathcal{E} -injectives or \mathcal{E} -projectives then their images under G are also indecomposables and $G(Y) \cong G(X)$ imply $Y \cong X$. Here $\mathbf{C}_{\mathbf{m}+\mathbf{n}}(\operatorname{proj} \Lambda)$ is of finite representation type, then also $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ is of finite representation type.

Now suppose that Λ is a gentle algebra k(Q, I). Then from the description of the objects in $\mathbf{K}^{-,\mathbf{b}}(\operatorname{proj} \Lambda)$ in [6] one can see that if there are generalized strings in Q of arbitrary size corresponding to complexes in $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ for some fixed m, then there are generalized bands, but this implies that Λ is not derived discrete, therefore for any m, $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ is of finite representation type.

Conversely assume $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ is of finite representation type for all m.

Take $\mathbf{h} = (h_i)$ a homology dimension, we may assume $h_i = 0$ for *i* outside the interval [2, ..., m]. Take $d = |\mathbf{h}|(mL + (m-1)L^2 + ... + 2L^{m-1} + L^m)$, then by Lemma 2.2, $\mathcal{V}(\mathbf{h}) \subset \mathcal{V}_d$. The categories \mathcal{V}_d , \mathcal{U}_d and \mathcal{F}_d are equivalent, by assumption \mathcal{F}_d has only a finite number of isoclasses, the same is true for $\mathcal{V}(\mathbf{h})$. Therefore Λ is derived discrete.

The part b) is proved in Theorem 5.2 of [12].

c) Suppose that $\mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda)$ is of wild representation type. Then there is a bounded complex $W = (W^i, d_W^i)$ of $\Lambda - k < x, y >$ -bimodules free finitely generated over the right side, projectives as Λ -modules, with $W^i = 0$ for i outside the interval [1, ..., m] and $\operatorname{Im} d_W^{i-1} \subset \operatorname{rad} \Lambda W^i$, such that the functor $W \otimes_{k < x, y > -} :$ $\operatorname{mod} k < x, y > \to \mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ preserves iso-classes and indecomposables. The composition of this functor with the composition $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda) \to \mathbf{K}^{-,\mathbf{b}}(\operatorname{proj} \Lambda) \to \mathcal{D}^b(\Lambda)$ also preserves iso-classes and indecomposables, consequently Λ is derived wild.

d) Suppose Λ is derived tame, then if for some m, $\mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda)$ is of wild representation type then by c), Λ is derived wild, which contradicts b). Therefore for all m, $\mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda)$ is not of wild representation type, but this implies, by Theorem 1.1 that for all m, $\mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda)$ is of tame representation type.

Conversely assume that for all m, $\mathbf{C_m}(\operatorname{proj} \Lambda)$ is of tame representation type. Let **h** be a fixed homology dimension, take $d = |\mathbf{h}|(mL + (m-1)L^2 + ... + 2L^{m-1} + L^m)$ then $\mathcal{V}(\mathbf{h}) \subset \mathcal{V}_d$. Therefore there are rational algebras R_u , u = 1, ..., s and for each u a bounded complex $M_u = (M_u^i, d_{M_u}^i)$ over the $\Lambda - R_u$ -bimodules free finitely generated over the right side with $M_u^i = 0$ for i outside the interval [1, ..., m] such that for almost all isomorphism class [X] in \mathcal{F}_d there is a u and $\lambda \in S(R_u)$ with $X \cong M_u \otimes_{R_u} S_{\lambda}$.

We may assume that for all u and i, $\operatorname{Im} d_{M_u}^{i-1}$ and $\operatorname{Ker} d_{M_u}^i$ are direct summands of M_u^i as right R_u -modules.

Then for each $u, W_u = \tau^{\geq 1} M_u$ is a bounded complex over the $\Lambda - R_u$ -bimodules which is free finitely generated over the right side.

Take $Y \in \mathcal{V}(\mathbf{h})$, then there is a $P \in \mathcal{U}_d$ with a quasi-isomorphism $q: P \to Y$, we have $\tau^{\geq 1}P \cong Y$ in $\mathcal{D}^b(\Lambda)$.

Clearly $\tau^{\geq 1}P = \tau^{\geq 1}F(P), F(P) \in \mathcal{F}_d$. Therefore $F(P) \cong M_u \otimes_{R_u} S_\lambda$ for some u and some $\lambda \in S(R_u)$. Thus

$$Y \cong \tau^{\geq 1} P = \tau^{\geq 1} F(P) \cong \tau^{\geq 1} (M_u \otimes_{R_u} S_\lambda) \cong \tau^{\geq 1} (M_u) \otimes_{R_u} S_\lambda = W_u \otimes_{R_u} S_\lambda.$$

consequently Λ is derived tame.

e) Suppose Λ is not derived wild, then by c) for all m, $\mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda)$ is not of wild representation type, by Theorem 1.1, for all m, $\mathbf{C}_{\mathbf{m}}(\text{proj }\Lambda)$ is of tame representation type. Therefore by d), Λ is derived tame.

Theorem 2.4. Let Λ be a derived tame algebra and $\mathbf{h} = (h_i)$ be a fixed homology dimension such that for n_0 , $h_{n_0} \neq 0$ and $h_i = 0$ for $i < n_0$. Then for almost all isomorphism class of indecomposable objects $X \in \mathcal{D}^b(\Lambda)$ with $\mathbf{h} \dim X = \mathbf{h}$, X is a perfect object and there is an Auslander-Reiten triangle of the form:

$$X \to H \to X \to X[1]$$

Moreover if $X = (X^i, d_X^i)$ then $X_i = 0$ for $i < n_0 - 1$ and $d_X^{n_0 - 1} : X^{n_0 - 1} \to X^{n_0}$ is a monomorphism.

Proof. After a shifting we may assume $h_i = 0$ for $i \leq 1$ and i > n, $h_2 \neq 0$. By $\mathcal{U}(\mathbf{h})$ we denote the full subcategory of $\mathbf{K}^{\leq \mathbf{n}, \mathbf{b}}(\text{proj }\Lambda)$ whose objects are quasiisomorphic to complexes $X \in \mathcal{V}(\mathbf{h})$. The categories $\mathcal{U}(\mathbf{h})$ and $\mathcal{V}(\mathbf{h})$ are equivalent. We will see that for almost all isomorphism classes of objects P in $\mathcal{U}(\mathbf{h})$, P is a finite complex. If $P \in \mathcal{U}(\mathbf{h})$ then $\mathbf{h}\dim P = \mathbf{h}$, thus $\dim_k H^1(P) = h_1 = 0$, therefore $\mathcal{U}(\mathbf{h}) \subset \mathcal{L}_n$.

Recall that we have an equivalence $\underline{F} : \mathcal{L}_n \to \overline{\mathbf{C}_n}(\operatorname{proj} \Lambda)$.

Denote by $\mathcal{F}(\mathbf{h})$ the full subcategory of $\overline{\mathbf{C}_{\mathbf{n}}}(\text{proj }\Lambda)$ whose objects are isomorphic to some $\underline{F}(P)$ with $P \in \mathcal{U}(\mathbf{h})$. The categories $\mathcal{U}(\mathbf{h})$ and $\mathcal{F}(\mathbf{h})$ are equivalent categories. By Lemma 2.2, $\mathcal{F}(\mathbf{h}) \subset \mathcal{F}_d$ for $d = |\mathbf{h}|(nL + (n-1)L^2 + ... 2L^{n-1} + L^n)$.

For our purposes it is convenient consider $\mathcal{F}(\mathbf{h})[-1]$ as a full subcategory of $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ with m = n + 3. If $Y = (Y^i, d_Y^i)_{i \in \mathbb{Z}} \in \mathcal{F}(\mathbf{h})[-1]$, then $Y^1 = 0, Y^{n+2} = 0, Y^{n+3} = 0$ and $\dim_k Y \leq d$.

By d) of Theorem 2.1 $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ is of tame representation type. Then by Theorem 1.2 for almost all isomorphism class [Y] with $Y \in \mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ there is an almost split conflation

$$Y \to E \to Y$$

in $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$.

Following the notation of [2] we recall that $A(Y) \cong Y$. In order to calculate A(Y) we take $Z = (Z^i, d_Z^i)_{i \in \mathbb{Z}} = \nu(Y)[-1]$ and a quasi-isomorphism $q : Q = (Q^i, d_Q^i)_{i \in \mathbb{Z}} \to \tau^{\leq m} Z$, with $Q \in \mathbf{C}_{\mathbf{n}}^{\leq \mathbf{m}, \mathbf{b}}(\operatorname{proj} \Lambda)$. Then $A(Y) \cong F(Q)$. Moreover by [14] there is an Auslander-Reiten triangle in $\mathcal{D}^b(\Lambda)$:

$$Z \to G \to Y \to Z[1].$$

We have $Z^m = Z^{n+3} = \nu(Y^{n+2}) = 0$, therefore $\tau^{\leq m} Z = Z$.

Here Z is indecomposable, then Q is an indecomposable complex in the category $\mathbf{K}^{\leq \mathbf{m},\mathbf{b}}(\operatorname{proj} \Lambda)$, we may choose Q an indecomposable object in the category $\mathbf{C}^{\leq \mathbf{m},\mathbf{b}}(\operatorname{proj} \Lambda)$ with $Q^m = 0$, here $Z^m = 0$.

We have $F(Q) \cong A(Y) \cong Y$ in $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$, thus, $Q^1 \cong Y^1 = 0$. Here Q is indecomposable, this implies that $Q^i = 0$ for $i \leq 1$. Moreover $Z^2 = \nu(Y^1) = 0$, then

 $\mathbf{6}$

 $H^2(Q) \cong H^2(Z) = 0$. Therefore the morphism $d_Q^2 : Q^2 \to Q^3$ is a monomorphism and $Q \cong Y$, and $Z \cong Q \cong Y$ in $\mathcal{D}^b(\Lambda)$.

Thus we have an Auslander-Reiten triangle in $\mathcal{D}^b(\Lambda)$:

$$(*) \quad Y \to G \to Y \to Y[1].$$

Now $Y[1] \in \mathcal{F}(\mathbf{h})$ then $Y[1] \cong F(P)$ with $P \in \mathcal{U}(\mathbf{h})$. Therefore $P^1 \cong Y^2 \cong Q^2, P^2 \cong Y^3 \cong Q^3$. The morphism $d_Q^2: Q^2 \to Q^3$ is isomorphic to the morphism $d_P^1: P^1 \to P^2$, thus this last morphism is a monomorphism.

Here $h_1 = \dim_k(\operatorname{Ker} d_P^1/\operatorname{Im} d_P^0) = 0$, then $\operatorname{Im} d_P^0 = \operatorname{Ker} d_P^1 = 0$, consequently $d_P^0 = 0$. But P is indecomposable, therefore $P^i = 0$ for $i \leq 0$. Consequently $P = F(P) \cong Y[-1]$. Thus applying the equivalence [-1] to (*) we obtain our result.

Corollary 2.5. Suppose Λ is selfinjective, then either it is derived discrete or derived wild.

Proof. Suppose Λ is neither derived discrete nor derived wild. Then there are infinitely many isomorphism classes in $\mathcal{V}(\mathbf{h})$ for some homology dimension \mathbf{h} . Therefore there is an indecomposable X in $\mathcal{D}^b(\Lambda)$ with an Auslander-triangle of the form $X \to H \to X \to X[1]$ with $X = (X^i, d_X^i)$ indecomposable object in $\mathbf{C}^1_{\mathbf{m}}(\operatorname{proj} \Lambda)$ and $d_X^1 : X^1 \to X^2$ is a monomorphism, since X^1 is injective, this is not possible.

Corollary 2.6. Let Λ be derived tame, then for a fixed homology dimension \mathbf{h} , for almost all isomorphism classes [X] with $X \in \mathcal{D}^b(\Lambda)$ a finite complex of finitely generated projectives and $\mathbf{h}_{\dim_k} X = \mathbf{h}$, X is isomorphic to a finite complex of finitely generated injectives.

Remark. Observe that gentle algebras are Gorenstein and in this case all finite complexes of finitely generated projectives are also isomorphic to finite complexes of finitely generated injectives (see [13]).

Corollary 2.7. Let Λ be a derived tame algebra. Suppose P is a bounded complex of $\Lambda - R$ -bimodules projectives over Λ and free finitely generated over R, a rational algebra, such that for all $\lambda \in S(R)$, $P \otimes_R S_{\lambda}$ is indecomposable in $\mathcal{D}^b(\Lambda)$, and for $\lambda \neq \mu \in S(R)$, $P \otimes_R S_{\lambda} \ncong P \otimes_R S_{\mu}$ in $\mathcal{D}^b(\Lambda)$. Then if $\mathbf{h}_{\dim_k(x)}P \otimes_R k(x) = \mathbf{h} =$ (h_i) is such that $h_{n_0} \neq 0$ and $h_j = 0$ for $j < n_0$, we obtain that the morphism $d_P^{n_0-1} \otimes 1 : P^{n_0-1} \otimes_R k(x) \to P^{n_0} \otimes_R k(x)$ is a monomorphism.

Proof We may assume that for all $\lambda \in S(R)$, all Ker d^i are direct summands of P^i as right *R*-modules. Thus $\operatorname{hdim} P \otimes_R S_{\lambda} = \mathbf{h}$ for all $\lambda \in S(R)$. By Theorem 2.2, we may also assume that for all $\lambda \in S(R)$, $P^i \otimes S_{\lambda} = 0$ for $i < n_0 - 1$ and $\operatorname{Ker}(d^{n_0-1} \otimes 1 : P^{n_0-1} \otimes S_{\lambda} \to P^{n_0} \otimes S_{\lambda}) = 0$. But this implies our assertion. \Box

Corollary 2.8. Suppose Λ is a derived tame algebra and d a fixed non-negative integer, then almost all isomorphism classes of indecomposable Λ -modules M with $\dim_k M = d$ have projective dimension one.

Proof. For M indecomposable with $\dim_k M = d$, take

$$\ldots \to P_M^{-3} \xrightarrow{d_M^{-3}} P_M^{-2} \xrightarrow{d_M^{-2}} P_M^{-1} \xrightarrow{d_M^{-1}} P_M^0 \xrightarrow{\eta} M \to 0$$

a minimal projective resolution of M. Consider $P_M = (P_M^j, d_M^j)$ with $P_M^j = 0$, for j > 0 and $d_M^j = 0$ for $j \ge 0$. Then for $\mathbf{h} \dim M = (h_i)$, we have $h_0 = d$, $h_j = 0$ for j < 0. Then by Theorem 2.4 for almost all isomorphism classes [M], $P_M^j = 0$ for j < -1. This proves our claim.

3. Bocses

A tbocs is a triple $\mathcal{A} = (R, W, \delta)$, where R is a k-algebra (k is a field), W is a R-bimodule such that $W = W_0 \oplus W_1$ as R bimodules. The elements of W_i are called homogeneous of degree $i, i \in \{0, 1\}$. For $w \in W_i$, we put deg(w) = i.

Take now $T_R(W)$ the tensor algebra:

$$R \oplus W \oplus W^{\otimes^2} \oplus \dots$$

with the graduation induced by the one of W. The *R*-module generated by the set of homogeneous elements in $T_R(W)$ of degree *i* will be denoted by $T_R(W)_i$. Then δ is a endomorphism of *R*-bimodules of $T_R(W)$ such that

i) $\delta(T_R(W)_i) \subset T_R(W)_{i+1}$

ii) For a, b homogeneous elements of $T_R(W)$

$$\delta(ab) = \delta(a)b + (-1)^{dega}a\delta(b) \qquad \text{(Leibnitz rule)}$$

iii) $\delta^2 = 0$

The set of all elements of degree zero, $T_R(W)_0$ is a k-algebra which will be denoted by $A(\mathcal{A})$. This algebra is identified with $T_R(W_0)$. The set of all elements of degree one $T_R(W)_1$ is an $A(\mathcal{A})$ -bimodule, which can be identified with $A(\mathcal{A}) \otimes_R$ $W_1 \otimes_R A(\mathcal{A})$, and will be denoted by $V(\mathcal{A})$. Thus $T_R(W)$ is a differential graded algebra with differential δ . For v_1, v_2 in $T_R(W)$ we denote its product by v_1v_2 , in particular if the above elements are in W, $v_1v_2 = v_1 \otimes v_2$.

Let $\mathcal{A} = (R, W, \delta)$ be a thocs. The category of representations of \mathcal{A} , Rep \mathcal{A} is defined as follows:

The objects of $\operatorname{Rep}(\mathcal{A})$ are the left $\mathcal{A}(\mathcal{A})$ -modules.

Given two $A(\mathcal{A})$ -modules M and N, a morphism $f: M \to N$ in Rep \mathcal{A} is given by a pair $f = (f^0, f^1)$, where

$$f^0 \in \operatorname{Hom}_R(M, N), \quad f^1 \in \operatorname{Hom}_{A(\mathcal{A}), A(\mathcal{A})}(V(\mathcal{A}), \operatorname{Hom}_k(M, N))$$

such that for all $a \in A(\mathcal{A}), m \in M$:

$$af^{0}(m) = f^{0}(am) + f^{1}(\delta(a))(m)$$

Observe that the pair $(f^0, 0)$ is a morphism in Rep \mathcal{A} iff f^0 is a $\mathcal{A}(\mathcal{A})$ -morphism. Now if $f = (f^0, f^1) : \mathcal{M} \to \mathcal{N}$ and $g = (g^0, g^1) : \mathcal{N} \to \mathcal{L}$ are morphisms in Rep \mathcal{A} , the pair given by $(g^0 f^0, (gf)^1)$ with

$$(gf)^{1}(v) = g^{1}(v)f^{0} + g^{0}f^{1}(v) + \sum_{i=1}^{l} g^{1}(v_{i}^{1})f^{1}(v_{i}^{2})$$

for $\delta(v) = \sum_{i=1}^{l} v_i^1 v_i^2$, $v_i^1, v_i^2 \in V(\mathcal{A})$, is again a morphism. We will put $gf = (g^0 f^0, (gf)^1)$.

Using the properties of δ one can see that Rep \mathcal{A} is a category. The identity morphism for $M \in \text{Rep}\mathcal{A}$ is given by the pair $id_M = (id_M, 0)$.

For a tbocs $\mathcal{A} = (R, W, \delta)$ we have a functor

$$I_{\mathcal{A}} : \operatorname{Mod} A(\mathcal{A}) \to \operatorname{Rep} \mathcal{A}$$

which is the identity on objects and for morphisms $u: M \to N$ of $A(\mathcal{A})$ -modules, we have $I_{\mathcal{A}}(u) = (u, 0)$.

Let S be a k-algebra containing S_0 as k-subalgebra. We assume S_0 is a basic semisimple finite dimensional k-algebra, $1 = \sum_{i=1}^{n} e_i$ a decomposition into central orthogonal primitive idempotents.

Definition 3.1. Let W be a S-bimodule. A S_0 -subimodule \tilde{W} of W is said to be a S_0 -free generator of W if any morphism of S_0 -bimodules $u : \tilde{W} \to V, V$ a S-bimodule has a unique extension to a morphism of S-bimodules $v : W \to V$. In this case we say that W is a S_0 -free S-bimodule.

It is easy to see that \tilde{W} is a S_0 -free generator of W iff the morphism

 $\rho: S \otimes_{S_0} \tilde{W} \otimes_{S_0} S \to W$ given by $\rho(s \otimes w \otimes s_1) = sws_1$

is an isomorphism. On the other hand if $\sigma : S \otimes_{S_0} \tilde{W} \otimes_{S_0} S \to W$ is an isomorphism $\sigma(\tilde{W})$ is a S_0 -free generator of W.

Definition 3.2. A tbocs $\mathcal{A} = (S, W, \delta)$ is called S_0 -free triangular if the following conditions are satisfied:

T.1 There is a filtration of S-bimodules $\{0\} = W_0^0 \subset ... \subset W_0^r = W_0$ such that for $i \geq 1$ $\delta(W_0^i) \subset A_i W_1 A_i$, where A_i is the R-subalgebra of A generated by W_0^{i-1} .

T.2 There is a filtration of S_0 -bimodules $\tilde{W}_0^1 \subset ... \subset \tilde{W}_0^r = \tilde{W}_0$ such that \tilde{W}_0^j is a S_0 -free generator of W_0^j .

T.3 There is a sequence of subbimodules $\{0\} = W_1^0 \subset ... \subset W_1^s = W_1$ such that for $i \ge 1$ $\delta(W_1^i) \subset AW_1^{i-1}AW_1^{i-1}A$.

T.4 W_1 is S_0 -freely generated by \tilde{W}_1 .

If a tbocs A satisfies T.1, T.2 and T.4, we say that A is weakly triangular.

Through the paper S_0 -free triangular tbocses will be called simply triangular tbocses. We recall that in the category Rep \mathcal{A} idempotents split, moreover for $f = (f^0, f^1) : \mathcal{M} \to \mathcal{N}, f$ is an isomorphism if and only if f^0 is an isomorphism.

Definition 3.3. The k-algebra S is called minimal if there is a decomposition $1 = \sum_{i} e_i$ into central orthogonal primitive idempotents, such that $e_i S = e_i k$ or $e_i S$ is a rational k-algebra.

Definition 3.4. The tbocs $\mathcal{A} = (R, W, \delta)$ is called minimal if R is a minimal k-algebra and $W_0 = 0$.

If $\mathcal{A} = (R, W, \delta)$ is a minimal those then $A(\mathcal{A}) = R, V(\mathcal{A}) = W$, for $M, N \in \operatorname{Rep}\mathcal{A}$ the morphisms from M to N are given by all pairs $f = (f^0, f^1)$ with $f^0 \in \operatorname{Hom}_R(M, N), f^1 \in \operatorname{Hom}_{R-R}(W, \operatorname{Hom}_k(M, N)).$

Lemma 3.5. Suppose $\mathcal{A} = (R, W, \delta)$ is a triangular minimal tbocs, and $f : M \to M$ a morphism in Rep \mathcal{A} of the form $f = (0, f^1)$, then f is nilpotent.

Proof. Take $0 = W^0 \subset W^1 \subset ... \subset W^s = W$, the filtration of $W = W_1$ given by condition T.3 of Definition 3.2. Then we have $f^2 = (0, (f^2)^1)$ and $(f^2)^1(W^1) = 0$.

In general $f^r = (0, (f^r)^1)$ and $(f^r)^1(W^{r-1}) = 0$, therefore $f^{s+1} = (0, (f^{s+1})^1)$ and $(f^{s+1})^1(W^s) = (f^{s+1})^1(W) = 0$. Consequently $f^{s+1} = 0$.

Proposition 3.6. Suppose $\mathcal{A} = (R, W, \delta)$ is a triangular minimal tbocs, then an object $M \in \text{Rep}\mathcal{A}$ is indecomposable if and only if $_RM$ is indecomposable.

Proof. If M is indecomposable in Rep \mathcal{A} , clearly $_RM$ is indecomposable. Suppose now that $_RM$ is indecomposable. Take $f = (f^0, f^1)$ an idempotent element in End $_{\mathcal{A}}(M)$. Then $(f^0)^2 = f^0$, thus $f^0 = 0$ or $f^0 = id_M$. In the first case $f = (0, f^1)$, thus f is nilpotent, then since f is also idempotent we conclude that f = 0. In the second case f is an isomorphism therefore there is a $g \in \text{End}_{\mathcal{A}}(M)$ with $fg = gf = id_M$. Then $id_M = fg = f^2g = f(fg) = f$. Therefore M is indecomposable in Rep \mathcal{A} . This proves our result.

For $\mathcal{A} = (R, W, \delta)$ a minimal thocs, take $1_R = \sum_{i=1}^n e_i$ a decomposition of 1_R as a sum of central primitive orthogonal idempotents.

Proposition 3.7. Suppose $\mathcal{A} = (R, W, \delta)$ is a minimal triangular tbocs. Then if $M \in \operatorname{Rep}\mathcal{A}$ is indecomposable there is an e_i with $e_iM = M$

Proof. Here $R \cong Re_1 \times ... \times Re_n$, if M is an indecomposale R-module then $e_i M = M$ for some e_i . Our result follows from our previous proposition. \Box

4. Reduction Functors

In this section we study full and faithful functors $F : \operatorname{Rep}\mathcal{B} \to \operatorname{Rep}\mathcal{A}$ which have been considered in [1].

Let R be a k-algebra, we recall from [1] that X a left R-module is called $R - R_X$ admissible if R_X is a k-subalgebra of $\operatorname{End}_R(X)^{op}$ such that $\operatorname{End}_R(X)^{op} = R_X \oplus \mathcal{R}$ as R_X -bimodules with \mathcal{R} an ideal of $\operatorname{End}_R(X)^{op}$, finitely generated projective as right R_X -module, and X finitely generated projective as right R_X -module. We have $X^* = \operatorname{Hom}_{R_X}(X_{R_X}, R_X)$ is a $R_X - R$ -bimodule and $\mathcal{R}^* = \operatorname{Hom}_{R_X}(\mathcal{R}_{R_X}, R_X)$ is a R_X -bimodule. Take dual bases $\{p_j, \gamma_j\}$ for \mathcal{R} and $\{x_i, u_i\}$ for X as right R_X -modules.

We have morphisms

$$e: X \to X \otimes_{R_X} \mathcal{R}^*, \quad a: X^* \to \mathcal{R}^* \otimes_{R_X} X^*$$

such that for $u \in X^*, x \in X$, we have

$$e(x) = -\sum_{j} p_j(x) \otimes \gamma_j, \quad a(u) = \sum_{i,j} u(p_j(x_i))\gamma_j \otimes u_i.$$

Let $\mathcal{A} = (R, W, \delta)$ be a those and X a $R - R_X$ admissible left R-module. Consider the R_X -bimodules $(W_X)_0 = X^* \otimes_{R_X} W_0 \otimes_{R_X} X, (W_X)_1 = (X^* \otimes_{R_X} W_1 \otimes_{R_X} X) \oplus \mathcal{R}^*.$

For $u \in X^*$ and $v \in X$ we have k-linear maps:

 ϕ_u^n

$$\phi_{u,v}^0: R \to R_X$$

for $n \ge 1$:

$$_{v}: W^{\otimes^{n}} \to T_{R_{X}}(W_{X})$$

given by $\phi_{u,v}^0(r) = u(rv), \ \phi_{u,v}^n(w_1 \otimes w_2 \otimes \ldots \otimes w_n) = \sum_{i_1,i_2,\ldots,i_{n-1}} u \otimes w_1 \otimes x_{i_1} \otimes u_{i_1} \otimes w_2 \otimes x_{i_2} \otimes u_{i_2} \otimes \ldots \otimes x_{i_{n-1}} \otimes u_{i_{n-1}} \otimes w_n \otimes v.$

These morphisms determine a k-linear map:

$$\phi_{u,v}: T_R(W) \to T_{R_X}(W_X),$$

such that for $\lambda_1, \lambda_2 \in T_R(W)$ we have $\phi_{u,v}(\lambda_1\lambda_2) = \sum_i \phi_{u,x_i}(\lambda_1)\phi_{u_i,v}(\lambda_2)$. For $u \in X^*, v \in X$ we put for $\lambda \in T_R(W), \ \phi_{a(u),v}(\lambda) = \sum_{i,j} u(p_j(x_i))\gamma_j\phi_{u_i,v}(\lambda)$ and $\phi_{u,e(v)}(\lambda) = -\sum_{j} \phi_{u,p_{j}(x)}(\lambda)\gamma_{j}.$ There is a differential δ_{X} in $T_{R_{X}}(W_{X})$ with $\delta_{X}^{2} = 0$, and such that for t a

homogeneous element in $T_R(W)^1 = W \oplus W^{\otimes^2} \oplus \dots$ and $u \in X^*, v \in X$

(*)
$$\delta_X(\phi_{u,v}(t)) = \phi_{a(u),v}(t) + \phi_{u,v}(\delta(t)) + (-1)^{degt}\phi_{u,e(v)}(t).$$

For $r \in R, u \in X^*, v \in X$, we have:

$$\begin{split} \phi_{a(u),v}(r) + \phi_{u,e(v)}(r) &= \sum_{i,j} u(p_j(x_i))\gamma_j u_i(rv) - \sum_j u(rp_j(v))\gamma_j \\ &= \sum_{i,j} u(p_j(x_iu_i(rv)\gamma_j - \sum_j u(p_j(rv)\gamma_j = 0. \end{split}$$

Thus the equality (*) holds also for $r \in R$ and consequently for any $t \in A(\mathcal{A})$.

We have a thore $\mathcal{A}^X = (R_X, W_X, \delta_X)$. Moreover there is a functor F^X : Rep $\mathcal{A}^X \to \text{Rep}\mathcal{A}$, such that for $M \in \text{Rep}\mathcal{A}^X$, $F^X(M) = X \otimes_{R_X} M$ as *R*-modules and for $w \in W_0$, $w(x \otimes m) = \sum_i x_i \otimes \phi_{u_i,x}(w)m$. For $f = (f^0, f^1) : M \to N$ a morphism in Rep \mathcal{A} , $F^X(f)$ is given for $x \otimes m \in X \otimes_{R_X} M, w \in W_1$ by:

$$F^{X}(f)^{0}(x \otimes m) = x \otimes f^{0}(m) + \sum_{j} p_{j}(x) \otimes f^{1}(\gamma_{j})(m)$$
$$F^{X}(f)^{1}(w)(x \otimes m) = \sum_{i} f^{1}(u_{i} \otimes w \otimes x)(m).$$

Remark 4.1. We recall from Proposition 5.3 of [1] that an object $L \in \operatorname{Rep} A$ is isomorphic to some $F^X(M)$ iff ${}_RL \cong X \otimes_{R_X} L'$ as R-modules for some R_X -module L'. Observe that, in the above, if $\gamma \in T_R(W)$ is an element of degree 0 then $\gamma x \otimes m = \sum_{i} x_i \otimes \phi_{u_i,x}(\gamma) m.$

 $\begin{array}{l} \gamma x \otimes m = \sum_{i} x_{i} \otimes \phi_{u_{i},x}(\gamma)m. \\ If(f,0): M \to N \text{ is a morphism in } \operatorname{Rep} \mathcal{A}^{X}, \text{ then } F^{X}((f,0)) = (g,0). \text{ Conse-} \\ quently \ F^{X} \text{ induces a functor } F_{0}^{X}: \operatorname{Mod} A(\mathcal{A}^{X}) \to \operatorname{Mod} A(\mathcal{A}) \text{ such that } F^{X}I_{\mathcal{A}^{X}} \cong \\ I_{\mathcal{A}}F_{0}^{X}. \text{ Here }_{R}F_{0}^{X}(M) \cong X \otimes_{R_{X}} M, \text{ then } F_{0}^{X} \text{ is a right exact functor which commuts} \\ \text{with arbitrary direct sums, then } F_{0}^{X} \cong Y \otimes_{A(\mathcal{A}^{X})} - \text{ with } Y \text{ the } A(\mathcal{A}) - A(\mathcal{A}^{X}) - \\ \text{bimodule } F_{0}^{X}(A(\mathcal{A}^{X})). \text{ Thus }_{R}Y \cong X \otimes_{R_{X}} A(\mathcal{A}^{X}) \text{ which is a finitely generated} \\ \text{projective right } A(\mathcal{A}^{X}) \text{-module. Thus } Y \text{ is an } A(\mathcal{A}) - A(\mathcal{A}^{X}) \text{-bimodule projective} \end{array}$ finitely generated on the right side.

Proposition 4.2. Suppose $\mathcal{A} = (R, W, \delta)$ is a weak triangular tbocs, then $\mathcal{A}^X =$ $(R_X, W_X; \delta_X)$ is a weak triangular tbocs.

Proof. Consider $W_0^0 \subset \ldots \subset W_0^{r_0} = W_0$ and $(W_1)_0 \subset \ldots \subset W_1^{r_1} = W_1$ the corresponding filtrations given by the triangularity of \mathcal{A} .

We denote by $B_s(i, v, j)$ the R_X -bimodule generated by the elements of the form $f \otimes w \otimes x$ with $f \in X_i^*, w \in W_s^v, x \in X_j$.

We define

$$(W_X)_0^m = \sum_{i+2lv+j \le m} B_0(i,v,j),$$

$$(W_X)_1^{m+l} = \sum_{i+2lv+j \le m} B_1(i,v,j) \oplus \mathcal{R}^*,$$
$$(W_X)_1^i = \mathcal{R}_i^* \quad \text{for} \quad i \le l.$$

As in [1] one can see, that $\mathcal{A}^X = (R_X, W_X, \delta_X)$ is a weak triangular those with filtrations

$$0 = (W_X)_0^0 \subset ... \subset (W_X)_0^{2l(1+r_0)} = (W_X)_0$$

$$0 = (W_X)_1^0 \subset ... \subset (W_X)_1^{2l(1+r_1)+l} = (W_X)_1.$$

In the rest of this section we see a very useful reduction functor introduced originally in [7]. For this, let $\mathcal{A} = (R, W, \delta)$ be a tbocs with R a minimal k-algebra. Suppose $1 = \sum_{i=1}^{n} e_i$ is a decomposition into central primitive orthogonal idempotents, and $e_i R = k[x]_{f_i(x)}$ for $i = 1, ..., t, e_j R = k$ for j = t + 1, ..., n,

Now fix a natural number d and elements $g_1, ..., g_t \in k[x]$, with $(g_i, f_i) = 1$ for i = 1, ..., t.

For p a monic irreducible factor of g_i , $1 \le i \le t$ we put $Z_i(p) = e_i R/(p) \oplus ... \oplus e_i R/(p^d)$. For $1 \le i \le t$ we put $Z_i = \bigoplus_{p \in I(g_i)} Z_i(p)$, where $I(g_i)$ is the set of monic irreducible factors of g_i . For i = t + 1, ..., t + n we put $Z_i = e_i R = e_i k$. The *R*-module $Z = \bigoplus_i Z_i$ is basic with $\operatorname{End}_R^{op}(Z) = S_Z \oplus \mathcal{R}$ and $\mathcal{R} = \operatorname{radEnd}_R^{op}(Z)$.

We consider now $R' = (e_1 R)_{g_1} \times ... \times (e_t R)_{g_t}$, clearly we have an epimorphism in the category of rings $R \to R'$ and $\operatorname{Hom}_R(Z, R') = 0$, $\operatorname{Hom}_R(R', Z) = 0$. Then if $X = Z \oplus R'$, we have a full and faithful functor:

$$F^X : \operatorname{Rep} \mathcal{A}^X \to \operatorname{Rep} \mathcal{A},$$

with $\mathcal{A}^X = (R_X, W_X, \delta_X)$ and $R_X = S_Z \times R'$.

The decomposition of Z into the direct sum of indecomposable R-modules of the form $(e_i R)/(p^u)$ with $1 \leq i \leq t$ and $e_i R$ with i > t, and the decomposition of R' into the direct sum of R-modules of the form $(e_i R)_{g_i}$, with $1 \leq i \leq t$, gives a decomposition of R' into the direct sum of R-modules X_j . For each X_j we have the idempotent $e(X_j)$ which is the composition of the projection of X on X_j with the corresponding canonical inclusion in X.

For $1 \leq i \leq t$ and $1 \leq u \leq d$ we put $e_i^u(p) = e((e_i R)/(p^u))$, for p monic irreducible factor of g_i , and $e_i^0 = e((e_i R)_{g_i})$. For $t+1 \leq i \leq t+n$ we put $\underline{e}_i = e(e_i R)$.

The identity 1_X of R_X has the following decomposition into central primitive orthogonal idempotents:

$$1_X = \sum_{i=1}^t e_i^0 + \sum_{i=1}^t \sum_{p \in I(g_i)} \sum_{u=1}^d e_i^u(p) + \sum_{i=t+1}^{t+n} \underline{e}_i.$$

We have $e_i^0 R_X = (e_i R_X)_{g_i}$ for $1 \leq i \leq t$; $e_i^u(p) R_X = k e_i^u(p)$ for $1 \leq i \leq t$; $\underline{e}_i R_X = k \underline{e}_i$, for $t + 1 \leq i \leq t + n$. Therefore R_X is a minimal k-algebra.

We recall that $(W_X)_0 = X^* \otimes_R W_0 \otimes_R X$. For $1 \le i, j \le t$ we have:

- (1) $e_i^0(W_X)_0 e_j^0 = (e_i R)_{g_i} \otimes_R e_i W_0 e_j \otimes_R (e_j R)_{g_j};$
- (2) $e_i^0(W_X)_0 e_j^u(p) = (e_i R)_{g_i} \otimes_R e_i W_o e_j \otimes_R (e_j R)/(p^u);$
- (3) $e_i^u(p)(W_X)_0 e_j^0 = (e_i R)/(p^u))^* \otimes_R e_i W_o e_j \otimes_R (e_j R) g_j;$
- (4) $e_i^u(p)(W_X)_0 e_j^v(q) = (e_i R)/(p^u)^* \otimes_R e_i W_o e_j \otimes_R (e_j R)/(q^v).$ For $1 \le i \le t; t+1 \le j \le t+n$ we have :
- (5) $e_i^0(W_X)_0 \underline{e}_j \cong (e_i R)_{q_i} \otimes_R e_i W_0 e_j;$

- (6) $\underline{e}_j(W_X)_0)e_i^0 \cong e_j W_0 e_i \otimes_R (e_i R)_{g_i};$
- (7) $e_i^{u}(p)(W_X)_0)\underline{e}_j \cong (e_i R/(p^u))^* \otimes_R e_i W_0 e_j;$
- (8) $\underline{e}_i(W_X)_0)e_i^u(p) \cong e_jW_0e_i \otimes_R (e_iR/(p^u)).$
- Finally for $t + 1 \le i \le n$ we obtain:
- (9) $\underline{e}_i(W_X)_0 \underline{e}_j \cong e_i W_0 e_j.$

The reduction functor $F^X : \operatorname{Rep} \mathcal{A}^X \to \operatorname{Rep} \mathcal{A}$ will be called a $(d, g_1, ..., g_t)$ -unravelling.

Definition 4.3. For $\mathcal{A} = (R, W, \delta)$ a tbocs, an object $M \in \text{Rep}\mathcal{A}$ is an R - Ebimodule with $E = \text{End}_{\mathcal{A}}(M)^{op}$ and the right action of E on M given by $m.f = f^0(m)$ for $m \in M, f = (f^0, f^1) \in E$. Then M is called endofinite if the length of M as right E-module is finite, we will denote by endolM the length of M as right E-module.

Suppose now that M is an endofinite object in Rep \mathcal{A} . Then if $1 = \sum_i e_i$ is a decomposition into central primitive orhogonal idempotents of R, each $e_i M$ is a R-E-bimodule and $M = \bigoplus_i e_i M$ as R-E-bimodules, thus endol $M = \sum_i \text{length}(e_i M_E)$.

Assume that $e_i R = R_i = k[x]_h$, then $E \subset \operatorname{End}_{R_i}(e_i M) = E_i$. Then the length $(e_i M)_{E_i} \leq \operatorname{length}((e_i M)_E)$. Thus if M is endofinite, $e_i M$ is a endofinite R_i -module. Therefore $e_i M_{R_i} \cong \sum_{j \in J} L_j$ with L_j indecomposable R_i -modules and in the set $\{L_j\}$ there are only a finite number of isomorphism classes. The only endofinite indecomposables R_i -modules are k(x) and $k[x]/(x-\lambda)^m$ with $\lambda \in S(R_i)$, here $m \leq \operatorname{endol} M$.

Lemma 4.4. If $F^X : \operatorname{Rep} \mathcal{A}^X \to \operatorname{Rep} \mathcal{A}$ is a $(d, g_1, ..., g_t)$ unravelling, for each endofinite object $N \in \operatorname{Rep} \mathcal{A}$ with endol $N \leq d$, there is a $M \in \operatorname{Rep} \mathcal{A}^X$ endofinite with endol $M \leq \operatorname{endol} N$ and $F(M) \cong N$.

Proof. From the above considerations it follows that for $N \in \operatorname{Rep}\mathcal{A}$ with $\operatorname{endol} N \leq d$, there is a $M \in \operatorname{Rep}\mathcal{A}^X$ with $F(M) \cong N$. We will assume that F(M) = N. Take $E_M = \operatorname{End}_{\mathcal{A}^X}(M)^{op}$ and $E_N = \operatorname{End}_{\mathcal{A}}(N)^{op}$. There is an isomorphism of k-algebras $\phi : E_M \to E_N$ induced by the functor F^X . Take $\mathcal{R} = \operatorname{radEnd}_R(X)^{op}$ and an integer l with $\mathcal{R}^l = 0$.

We have a filtration \mathcal{F} of *R*-modules of $X \otimes_{R_X} M = N$:

$$N_{l-1} = \mathcal{R}^{l-1} X \otimes_{R_X} M \subset \ldots \subset N_1 = \mathcal{R} X \otimes_{R_X} M \subset N_0 = X \otimes_{R_X} M$$

Clearly \mathcal{F} is a filtration of R-modules. The ring E_M also acts on N by $f(x \otimes n) = x \otimes nf = x \otimes f^0(n)$ for $f = (f^0, f^1) \in E_N$. The filtration \mathcal{F} is also a filtration of $R - E_N$ -bimodules. Now observe that for $n \in N_{l-1}, f \in E_N$, we have $nf = n\phi(f)$. The same happen for $\underline{n} \in N_i/N_{i+1}$ for i = 0, ..., l-2. Then the E_N length of N is equal to the length of N as E_M -module. Now we recall that there is a decomposition $X = \bigoplus_{i=1}^s X_i$ with the X_i indecomposables pairwise nonisomorphic. Take f_i the composition of the projection on the *i*-th summand followed of the corresponding injection. Then we have $1_X = \sum_{i=1}^s f_i$ a decomposition into primitive orthogonal idempotents, $Xf_i = X_i$. Here we have that X is projective finitely generated as right R_X -module, then each X_i is R_X projective, then $X_i \cong n_i f_i R_X$ and $n_i \neq 0$. Then

$$\mathrm{endol} N = \mathrm{length}_{E_M} N = \mathrm{length}_{E_M} X \otimes_{R_X} M = \sum_{i=1}^s \mathrm{length}_{E_M} n_i f_i M$$

$$\geq \sum_{i=1}^s \text{length}_{E_M} f_i M = \text{length}_{E_M} M = \text{endol} M.$$
 This proves our claim. $\hfill \square$

Definition 4.5. Let R be a minimal k-algebra. Suppose $1 = \sum_{i=1}^{n} e_i$ is a decomposition into central primitive orthogonal idempotents, and $e_i R = k[x]_{f_i(x)}$ for $i = 1, ..., t, e_j R = k$ for j = t + 1, ..., n, we say that a R-bimodule U is thin if $e_i U e_j = 0$ for $i \leq t$ and $j \leq t$. A those $\mathcal{A} = (R, W, \delta)$ is called thin if W_0 is a thin R-bimodule.

Observe that having in account the above relations 1-9, if \mathcal{A} is a thin tbocs, and $F^X : \operatorname{Rep} \mathcal{A}^X \to \operatorname{Rep} \mathcal{A}$ is a $(d, g_1, ..., g_t)$ -unravelling, then \mathcal{A}^X is also a thin tbocs.

Let S be a k-subalgebra of R, we recall that U a R-bimodule is called S- free if there is a S-subimodule \hat{U} of U such that the morphism of R-bimodules μ_U : $R \otimes_S \hat{U} \otimes_S R \to U$ given by $\mu_U(r_1 \otimes u \otimes r_2) = r_1 u r_2$ is an isomorphism.

Lemma 4.6. Suppose U is a thin R-bimodule, then U is S-free if for all $1 \le i \le t$, Ue_i is free as right e_iR -module and e_iU is free as left e_iR -module.

Proof. Observe that Ue_i is free as right e_iR -module iff it is S free as R-bimodule. Similarly e_iU is free as left e_iR -module iff it is S-free as a R-bimodule. Therefore if the hypothesis of the proposition holds, then for each $1 \leq i \leq t$ there are Ssubbimodules V_i of Ue_i and $_iV$ of e_iU , such that the morphisms: $\mu_{V_i} : R \otimes_S V_i \otimes_S R \to Ue_i$ and $\mu : R \otimes_S (_iV) \otimes_S R \to e_iU$ are isomorphisms.

For $V_0 = \sum_{i,j \ge t+1} e_i U e_j$, the morphism $\mu_{V_0} : R \otimes_S V_0 \otimes_S R \to \sum_{i,j \ge t+1} e_i U e_j$ is clearly an isomorphism. Consequently, if $V = \sum_i (V_i + iV) + V_0$, then the morphism $\mu_V : R \otimes_S V \otimes_S R \to U$, is an isomorphim. Therefore V is a S-free generator for the R-bimodule U.

Definition 4.7. Let U be a R-bimodule, a filtration $U^1 \subset ... \subset U^r = U$ is called a S-free filtration if for u = 1, ..., r there are S-free generators V^u of U^u such that $V^1 \subset ... \subset V^r$.

The following is clear.

Lemma 4.8. Let U be a thin R-bimodule, suppose that for $1 \leq i \leq t$ there are S-free filtrations $U_i^1 \subset ...U_i^r = Ue_i$, ${}_iU^1 \subset ... \subset {}_iU^r = e_iU$, and $U_0^1 \subset ... \subset {}_0U^r = \sum_{i,j\geq t+1} e_iUe_j$, then if for $1 \leq u \leq r$, $U^u = \sum_{i\leq t} (U_i^u + {}_iU^u) + U_0^u$,

$$U^1 \subset \ldots \subset U^r = U$$

is a S-free filtration for U.

Proposition 4.9. Let $\mathcal{A} = (R, W, \delta)$ be a thin weak triangular tbocs, then there is a $(d, g_1, ..., g_t)$ - unravelling,

$$F^X : \operatorname{Rep} \mathcal{A}^X \to \operatorname{Rep} \mathcal{A}$$

such that \mathcal{A}^X is a thin triangular tbocs.

Proof. Here \mathcal{A} is weak triangular, we have a filtration

$$w: \quad 0 = W_0^0 \subset W_0^1 \subset \ldots \subset W_0^r = W_0$$

14

satisfying the condition T.1 of Definition 3.2. There are elements $g_1, ..., g_t$ such that for $1 \leq i \leq t, 1 \leq u \leq r$, $(e_i R)_{g_i} \otimes_R W_0^u$ and $W_0^u \otimes_R (e_i R)_{g_i}$ are free left $(e_i R)_{g_i}$ -modules and free right $(e_i R)_{g_i}$ -modules respectively, and for $1 \le u \le r-1$, $(e_i R)_{g_i} \otimes_R W_0^{u-1}$ is a direct summand as left $(e_i R)_{g_i}$ -module of $(e_i R)_{g_i} \otimes_R W_0^u$

and $W_0^{u-1} \otimes_R (e_i R)_{g_i}$ is a summand as right $(e_i R)_{g_i}$ -module of $W_0^u \otimes_R (e_i R)_{g_i}$. Now $S = S_0 \times S_1$ with $S_0 = \sum_{i>t} e_i k$ and $S_1 = \sum_{i\leq t} e_i k$. Here W_0 is thin, $S_1 W_0^u \otimes_R (e_i R)_{g_i} = 0$ and $(e_i R)_{g_i} \otimes_R W_0^u S_1 = 0$. Thus each $W_0^u \otimes_R (e_i R)_{g_i}$ is a $S_0 - (e_i R)_{g_i}$ -bimodule, therefore there are S_0 -left modules W_i^u -submodules of $W_0^u \otimes_R (e_i R)_{q_i}$ such that, $\hat{W}_i^{u-1} \subset \hat{W}_i^u$ and the morphisms

$$\mu_{i,u}: \hat{W}_i^u \otimes_k (e_i R)_{g_i} \to W_0^u \otimes_R (e_i R)_{g_i}, \quad \mu_{i,u}(w \otimes f) = wf,$$

are isomorphisms. Similarly, there is a S_0 -right submodule $_i\hat{W}^u$ of $(e_iR)_{q_i}\otimes_R W_0^u$ such that $_{i}\hat{W}^{u-1} \subset_{i} \hat{W}^{u}$ and

$$\nu_{i,u}: (e_i R)_{g_i} \otimes_k {}_i \hat{W}^u \to (e_i R)_{g_i} \otimes_R W^u_0, \quad \nu_{i,u}(f \otimes w) = fw,$$

is an isomorphism.

Take now the $(d, g_1, ..., g_t)$ -unravelling, $F^X : \operatorname{Rep} \mathcal{A}^X \to \operatorname{Rep} \mathcal{A}$. Then there is a filtration of $(W_X)_0$:

$$0 = (W_X)_0^0 \subset (W_X)_0^1 \subset \dots \subset (W_X)_0^{2(r+1)} = (W_X)_0$$

having condition T.1 of Definition 3.2.

We define:

$$(S_X)_0 = \sum_{i>t} \underline{e_i}k, \ (S_X)_1 = \sum_{i\leq t} e_i^0 k, \ (S_X)_2 = \sum_{i\leq t} \sum_{p\in I(g_i)} \sum_{u=1}^{\circ} e_i^u(p)k.$$

Then we have $S_X = (S_X)_0 \times (S_X)_1 \times (S_X)_2$, $(S_X) \cong S_0$, $(S_X)_1 \cong S_1$ and $R_X = (S_X)_0 \times (S_X)_2 \times R'$ with $(S_X)_1 \subset R' = \sum_{i \le t} e_i^0 R_X$.

Each $W_0^u \otimes_R (e_i R)_{g_i}$ is a $S_0 - (e_i R)_{g_i}$ -bimodule. Through the projection $R_X \to (S_X)_0$ followed by the isomorphism $(S_X)_0 \to S_0$ and the projection $R_X \to (e_i R)_{g_i}, W_0^u \otimes_R (e_i R)_{g_i}$ becomes a R_X -bimodule. Moreover we have the commutative diagram:

$$R_X \otimes_{S_X} \hat{W}^u_i \otimes_{S_X} R_X \xrightarrow{\rho w_0} W^u_0 \otimes_R (e_i R)_{g_i},$$

therefore \hat{W}_i^u is a S_X -free generator of the R_X -bimodule $W_0^u \otimes_R (e_i R)_{g_i}$. For $2l(s+1) \leq m \leq 2l(s+2) - 1$ there is an isomorphism of R_X -bimodules:

$$(W_X)_0^m e_i^0 \stackrel{\phi_m}{\to} (W_0^s e_i) \otimes_R (e_i R)_{g_i}.$$

Then $V_i^m := \phi_m^{-1}(\hat{W}_i^s)$ is a S_X -free generator of $(W_X)_0^m e_i^0$. We have the following commutativity diagram:

with s' = s+1 if m = 2l(s+2)-1 and s' = s otherwise. Thus we have $V_i^m \subset V_i^{m+1}$, and consequently the filtration

$$(W_X)_0^1 e_i^0 \subset \ldots \subset (W_X)_0^{2l(r+1)} e_i^0 = (W_X)_0 e_i^0$$

is a S_X -free filtration. In a similar way one can prove that the filtration

$$e_i^0(W_X)_0^1 \subset \dots \subset e_i^0(W_X)_0^{2l(r+1)} = e_i^0(W_X)_0,$$

is also a S_X -free filtration. Therefore by Lemma 4.8 the filtration w is a S_X -free filtration. Clearly $(W_X)_1$ is a S_X -free *R*-bimodule, therefore our thocs \mathcal{A}^X is free triangular.

Proposition 4.10. Let $\mathcal{A} = (R, W, \delta)$ be a thin free triangular tbocs, which is not of wild representation type, then given a natural number d, there is a finite set of full and faithful functors $F_i : \operatorname{Rep} \mathcal{B}_i \to \operatorname{Rep} \mathcal{A}, i = 1, ..., m$ such that: i) each $\mathcal{B}_i = (R_i, W^i, \delta_i)$ is a minimal triangular theory;

ii) for $M \in \operatorname{Rep} \mathcal{A}$ with $\operatorname{endol} M \leq d$, there is an $i \in \{1, ..., m\}$ and $N \in \operatorname{Rep} \mathcal{B}_i$ with $F_i(N) \cong M$;

iii) for each $i \in \{1, ..., m\}$ there is a $A(\mathcal{A}) - R_i$ -bimodule Y_i , projective finitely generated over the right side such that

$$F_i I_{\mathcal{B}_i} \cong I_{\mathcal{A}}(Y_i \otimes_{R_i} -).$$

Proof. By Proposition 4.9 there is a functor $F^X : \operatorname{Rep} \mathcal{A}^X \to \operatorname{Rep} \mathcal{A}$, given by a $(d, g_1, ..., g_t)$ -unravelling such that \mathcal{A}^X is a free triangular thores. Moreover for M with $\operatorname{endol} M \leq d$ there is a $N \in \operatorname{Rep} \mathcal{A}^X$ with $F^X(N) \cong M$. Since \mathcal{A} is not of wild representation type then \mathcal{A}^X is not of wild representation type. Therefore by [8] or by Theorem 11.1 of [4] there is a finite set of full and faithful functors $G_i : \operatorname{Rep} \mathcal{B}_i \to \operatorname{Rep} \mathcal{A}^X$ satisfying conditions i), ii) and iii). Then using Lemma 4.4 and the second part of Remark 4.1 the full and faithful functors $F_i = F^X G_i$: $\operatorname{Rep} \mathcal{B}_i \to \operatorname{Rep} \mathcal{A}$ satisfy i), ii) and iii).

Remark 4.11. With the notation of Proposition 4.10 suppose $1_R = \sum_{i=1}^{s} e_i$ is a decomposition into central primitive orthogonal idempotents. We consider $D(\mathcal{A}) =$ \mathbb{Q}^s , for $M \in \operatorname{rep}\mathcal{A}$ we put $\underline{\dim}M = (\dim_k e_1 M, ..., \dim_k e_s M)$.

For i = 1, ..., t, R_i is a minimal k-algebra thus we have a decomposition of $1_{R_i} =$ $\sum_{j}^{s(j)} f_{i,j} \text{ with } f_{i,j}, j = 1, ..., s(j) \text{ a set of central primitive orthogonal idempotents.}$ The functor $F_i : \operatorname{Rep}\mathcal{B}_i \to \operatorname{Rep}\mathcal{A}$ determines a k-linear map $t_{F_i} : D(\mathcal{B}_i) \to D(\mathcal{A})$ such that for $M \in \operatorname{rep} \mathcal{B}_i$ we have $\underline{\dim} F_i(M) = t_{F_i}(\underline{\dim} M)$.

5. A CATEGORY OF MORPHISMS

Let $\mathcal{A} = (R, W, \delta)$ be a minimal triangular thocs. Suppose $1_R = \sum_{j=1}^n e_j$ with $\{e_j\}_{j=1}^n$ central primitive orthogonal idempotents in R, now assume that $e = \sum_{j=1}^{t} e_j$ with t < n is such that eR = Re = eRe is a semisimple k-algebra, we denote $f = \sum_{j>t} e_j$. From the triangularity condition T.3 of Definition 3.2 we have a filtration $0 \subset W^1 \subset \ldots \subset W^m = W$.

We will consider the following category of radical morphisms in Rep \mathcal{A} , \mathcal{M} .

The objects of \mathcal{M} are the radical morphisms $\phi: X \to Y$ with fX = 0. The morphisms from $\phi: X \to Y$ to $\phi': X' \to Y'$ two objects of \mathcal{M} , are given by pairs

16

of morphisms $u = (u_1, u_2), u_1 : X \to X', u_2 : Y \to Y'$, morphisms in RepA such that $u_2\phi = \phi u_1$.

If $v = (v_1, v_2)$ is a morphism from $\phi' : X' \to Y'$ to $\phi'' : X'' \to Y''$, then $vu = (v_1u_1, v_2u_2)$. Observe that if $\phi : X \to Y$ is a morphism object of \mathcal{M} , then this morphism has the form $\phi = (0, \phi^1)$.

Clearly \mathcal{M} is a category, we shall see that this category is equivalent to the category of representations of a triangular tbocs.

We first describe the morphisms in the category \mathcal{A} .

Suppose $u = (u_1, u_2) : \phi \to \phi'$ is a morphism in \mathcal{M} with $\phi = (0, \phi^1) : X \to Y$, $\phi' = (0, (\phi')^1) : X' \to Y'$. Here $u_1 = (u_1^0, u_1^1), u_2 = (u_2^0, u_2^1), u_2\phi = \phi'u_1$. For $w \in W_1 = W$ with $\delta(w) = \sum_s w_s^1 \otimes w_s^2$ we have:

$$(\phi')^1(w)u_1^0 + \sum_s (\phi')^1(w_s^1)u_1^1(w_s^2) = u_2^0\phi^1(w) + \sum_s u_1^1(w_s^1)\phi^1(w_s^2).$$

For $w \in W, x \in X$,

$$\phi^1(wf)(x) = \phi^1(fx) = 0, \quad \text{therefore} \quad \phi^1(w) = \phi^1(we).$$

In a similar way we have $(\phi')^1(w) = (\phi')^1(we)$. Moreover :

$$u_1^1(fw)(x) = fu_1^1(w)(x) = 0, u_1^1(wf)(x) = u_1^1(fx) = 0,$$

therefore $u_1^1(w) = u_1^1(ewe)$. Then for $w \in W$ with $\delta(w) = \sum_s w_s^1 \otimes w_s^2$, we have:

(2)
$$(\phi')^1(we)u_1^0 - u_2^0\phi^1(we) = \sum_s u_1^1(w_s^1)\phi^1(w_s^2e) - \sum_s (\phi')^1(w_s^1e)u_1^1(ew_s^2e).$$

Now in order to describe the category \mathcal{M} in terms of a tbocs we introduce the following triangular tbocs, $\mathcal{B} = (S, W_{\mathcal{B}}, \delta_{\mathcal{B}})$, with

$$S = \begin{pmatrix} R & 0 \\ 0 & eRe \end{pmatrix}, (W_{\mathcal{B}})_0 = \begin{pmatrix} 0 & We \\ 0 & 0 \end{pmatrix}, (W_{\mathcal{B}})_1 = \begin{pmatrix} W & 0 \\ 0 & eWe \end{pmatrix}$$

For $w \in W$ with $\delta(w) = \sum_s w_s^1 \otimes w_s^2$ we put

$$\begin{split} \delta_{\mathcal{B}} \left(\begin{array}{c} 0 & we \\ 0 & 0 \end{array} \right) &= \sum_{s} \left(\begin{array}{c} 0 & w_{s}^{1} \\ 0 & 0 \end{array} \right) \otimes \left(\begin{array}{c} 0 & w_{s}^{2}e \\ 0 & 0 \end{array} \right) - \left(\begin{array}{c} 0 & w_{s}^{1}e \\ 0 & 0 \end{array} \right) \otimes \left(\begin{array}{c} 0 & 0 \\ 0 & ew_{s}^{2}e \end{array} \right) \\ &= \sum_{s} \left(\begin{array}{c} 0 & w_{s}^{1} \otimes w_{s}^{2}e - w_{s}^{1}e \otimes ew_{s}^{2}e \\ 0 & 0 \end{array} \right) \cdot \\ \delta_{\mathcal{B}} \left(\begin{array}{c} w & 0 \\ 0 & 0 \end{array} \right) &= \left(\begin{array}{c} w_{s}^{1} & 0 \\ 0 & 0 \end{array} \right) \otimes \left(\begin{array}{c} w_{s}^{2} & 0 \\ 0 & 0 \end{array} \right) = \sum_{s} \left(\begin{array}{c} w_{s}^{1} \otimes w_{s}^{2} & 0 \\ 0 & 0 \end{array} \right) , \\ \delta_{\mathcal{B}} \left(\begin{array}{c} 0 & 0 \\ 0 & ewe \end{array} \right) &= \sum_{s} s \left(\begin{array}{c} 0 & 0 \\ 0 & ew_{s}^{1}e \end{array} \right) \otimes \left(\begin{array}{c} 0 & 0 \\ 0 & ew_{s}^{2}e \end{array} \right) , \\ &= \sum_{s} \left(\begin{array}{c} 0 & 0 \\ 0 & ew_{s}^{1}e \otimes ew_{s}^{2}e \end{array} \right) , \end{split}$$

using Leibnitz rule one can extend $\delta_{\mathcal{B}}$ to a function $\delta_{\mathcal{B}}: T_R(W) \to T_R(W)$, in order to see that $\delta_{\mathcal{B}}^2 = 0$, it is enough to prove that for $w \in W$ we have:

$$\delta_{\mathcal{B}}^2 \left(\begin{array}{cc} 0 & we \\ 0 & 0 \end{array} \right) = 0, \ \delta_{\mathcal{B}}^2 \left(\begin{array}{cc} w & 0 \\ 0 & 0 \end{array} \right) = 0, \ \delta_{\mathcal{B}}^2 \left(\begin{array}{cc} 0 & 0 \\ 0 & ewe \end{array} \right) = 0$$

Take $w \in W$ with $\delta(w) = \sum_s w_s^1 \otimes w_s^2$ and $\delta(w_s^1) = \sum_j w_{s,j}^{1,1} \otimes w_{s,j}^{1,2}$, $\delta(w_s^2) = \sum_j w_{s,j}^{2,1} \otimes w_{s,j}^{2,2}$. From $\delta^2 = 0$ we obtain:

(1)
$$\sum_{s,j} w_{s,j}^{1,1} \otimes w_{s,j}^{1,2} \otimes w_s^2 - \sum_{s,j} w_s^1 \otimes w_{s,j}^{2,1} \otimes w_{s,j}^{2,2} = 0.$$

Taking $\delta_{\mathcal{B}}^2 \begin{pmatrix} 0 & we \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & u \\ 0 & 0 \end{pmatrix}$, we have:

$$\begin{split} u &= \sum_{s,j} w_{s,j}^{1,1} \otimes w_{s,j}^{1,2} \otimes w_s^2 e - \sum_{s,j} w_s^1 \otimes w_{s,j}^{2,1} \otimes w_{s,j}^{2,2} e \\ &+ \sum_{s,j} w_{s,j}^{1,1} \otimes w_{s,j}^{1,2} e \otimes e w_s^2 e - \sum_{s,j} w_s^1 \otimes w_{s,j}^{2,1} e \otimes e w_{s,j}^{2,2} e \\ &+ \sum_{s,j} w_{s,j}^{1,1} e \otimes e w_{s,j}^{1,2} e \otimes e w_s^2 e - \sum_{s,j} w_s^1 e \otimes e w_{s,j}^{2,1} e \otimes e w_{s,j}^{2,2} e \end{split}$$

Now taking the projections $W \otimes_R W \otimes_R W \otimes_R W \to W \otimes_R W \otimes_R W \otimes_R W \otimes_R We$, given by $w_1 \otimes w_2 \otimes w_3 \to w_1 \otimes w_2 \otimes w_3 e$; $W \otimes_R W \otimes_R W \otimes_R W \otimes_R W \otimes_R W \otimes_R We \otimes_R eWe$ given by $w_1 \otimes w_2 \otimes w_3 \to w_1 \otimes w_2 e \otimes ew_3 e$ and $W \otimes_R W \otimes_R W \otimes_R W \to We \otimes_R eWe \otimes_R eWe \otimes_R eWe$ given by $w_1 \otimes w_2 \otimes w_3 \to w_1 e \otimes ew_2 e \otimes ew_3 e$ of (1) we obtain that u = 0.

In a similar way we obtain the second and thirth equalities.

Proposition 5.1. The tbocs $\mathcal{B} = (S, W_{\mathcal{B}}, \delta_{\mathcal{B}})$ is a weak thin triangular tbocs.

Proof. Here $\mathcal{A} = (R, W, \delta)$ is triangular, by definition there is a basic semisimple k-subalgebra R_0 of R. Then $S_0 = \begin{pmatrix} R_0 & 0 \\ 0 & eR_0e \end{pmatrix}$ is a basic semisimple k-subalgebra of S. We have filtrations $\{0\} \subset (W_{\mathcal{B}})_i^1 \subset (W_{\mathcal{B}})_i^1 \subset \dots \subset (W_{\mathcal{B}})_i^m = (W_{\mathcal{B}})_i$, for i = 0, 1, with

$$(W_{\mathcal{B}})_0^i = \begin{pmatrix} 0 & W^i e \\ 0 & 0 \end{pmatrix}, (W_{\mathcal{B}})_1^i = \begin{pmatrix} W^i & 0 \\ 0 & eW^i e \end{pmatrix}.$$

Then \mathcal{B} satisfies condition T.1, and T.3 of Definition 3.2. Now there is a $R_0 - R_0$ subimodule \hat{W} of W such that $W \cong R \otimes_{R_0} \hat{W} \otimes_{R_0} R$. Then $eWe \cong eRe \otimes_{eR_0e} e\hat{W}e \otimes_{eR_0e} eRe$, therefore:

$$S \otimes_{S_0} \left(\begin{array}{cc} \hat{W} & 0 \\ 0 & e \hat{W} e \end{array} \right) \otimes_{S_0} S \cong \left(\begin{array}{cc} W & 0 \\ 0 & e W e \end{array} \right)$$

Thus we also have condition T.4 of Definition 2.1. This proves our result.

Theorem 5.2. There exists a functor $F : \operatorname{Rep} \mathcal{B} \to \mathcal{M}$ which is an equivalence of categories.

Proof. We have $A(\mathcal{B}) = T_S((W_{\mathcal{B}})_0) = \begin{pmatrix} R & We \\ 0 & eRe \end{pmatrix}$. We have in $A(\mathcal{B})$ the idempotents $\eta = \begin{pmatrix} 1_R & 0 \\ 0 & 0 \end{pmatrix}$, $\sigma = \begin{pmatrix} 0 & 0 \\ 0 & e \end{pmatrix}$. Take $V \in \operatorname{Rep}\mathcal{B}$, here V is an $A(\mathcal{B})$ -module then $V = \eta V \oplus \sigma V$ as k-modules. Here $V_1 = \eta V$ is a R-module and $V_2 = \sigma V$ is a eRe-module. The action of $A(\mathcal{B})$ on V induces a morphism of R-modules: $h: We \otimes_{eRe} V_2 \to V_1$. Conversely if V_1 is a R-module, V_2 is a eRe-module

and $h: We \otimes_{eRe} V_2 \to V_1$ a morphism of *R*-modules the triple $(V_1, V_2; h)$ determines an $A(\mathcal{B})$ -module V.

We recall we have an isomorphism

$$\psi : \operatorname{Hom}_{R}(We \otimes_{eRe} V_{2}, V_{1}) \to \operatorname{Hom}_{R-eRe}(We, \operatorname{Hom}_{k}(V_{2}, V_{1})).$$

Then if $V \in \operatorname{Rep} \mathcal{B}$ is given by the triple $(V_1, V_2; h)$ we define $F(V) = \phi = (0, \phi^1) : V_2 \to V_1$ with $\phi^1 = \psi(h)\tau \in \operatorname{Hom}_{R-eRe}(We, \operatorname{Hom}_k(V_2, V_1))$ $= \operatorname{Hom}_{R-R}(We, \operatorname{Hom}_k(V_2, V_1))$, where τ is the inclusion of We in W. Clearly ϕ is a morphism in \mathcal{A} which is an object in \mathcal{M} .

Now take $z: V \to V'$ a morphism in Rep \mathcal{B} , $z = (z^0, z^1)$. Here z^0 is a morphism of S-modules from V to V', then $z^0 = (z_1^0, z_2^0)$ with $z_1^0: V_1 \to V_2$ a morphism of R-modules and $z_2^0: V_2 \to V_2'$ a morphism of eRe-modules. On the other hand:

$$z^1: \left(\begin{array}{cc} W & 0\\ 0 & eWe \end{array}
ight) \to \operatorname{Hom}_k(V, V')$$

is a morphism of S - S-bimodules, therefore $z^1 = (z_1^1, z_2^1)$ with $z_1^1 : W \to \operatorname{Hom}_k(V_1, V_1')$ a morphism of R - R-bimodules and $z_2^1 : eWe \to \operatorname{Hom}_k(V_2, V_2')$ a morphism of eRe - eRe-bimodules. Since $z : V \to V'$ is a morphism in Rep \mathcal{B} we have for all $we \in We$ with $\delta(w) = \sum_s w_s^1 \otimes w_s^2$ and $v_1 \in V_1, v_2 \in V_2$:

$$\left(\begin{array}{cc} 0 & we \\ 0 & 0 \end{array}\right) z^0 \left(\begin{array}{c} v_1 \\ v_2 \end{array}\right) = z^0 \left(\begin{array}{cc} 0 & we \\ 0 & 0 \end{array}\right) \left(\begin{array}{c} v_1 \\ v_2 \end{array}\right) + z^1 \delta_{\mathcal{B}} \left(\begin{array}{c} 0 & we \\ 0 & 0 \end{array}\right).$$

Then we obtain:

$$\begin{pmatrix} h'(w \otimes z_2^0(v_2)) \\ 0 \end{pmatrix} = z^0 \begin{pmatrix} h(w \otimes v_2) \\ 0 \end{pmatrix}$$
$$+ \sum_s z^1 \left[\begin{pmatrix} w_s^1 & 0 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & w_s^2 e \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & w_s^2 e \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 \\ 0 & ew_s^2 e \end{pmatrix} \right] \begin{pmatrix} v_1 \\ v_2 \end{pmatrix},$$

from here we obtain the equality:

(3)
$$(\phi)^1(w)(z_2^0(v_2)) = z_1^0(\phi^1(w)(v_2))$$

+ $\sum_s z_1^1(w_s^1)(\phi^1(w_s^2)(v_2)) - \sum_s (\phi')^1(w_s^1e)(z_2^1(ew_s^2e)(v_2)).$

We have that $u_1 = (z_1^0, z_1^1)$ is a morphism from V_1 to V'_1 in Rep \mathcal{A} , and $u_2 = (z_2^0, z_2^1)$ is a morphism from V_2 to V'_2 . Then by (2) we have that $u = (u_1, u_2)$ is a morphism from $\phi = F(V)$ to $\phi' = F(V')$. We put F(z) = u. Now is clear that if F(z) = 0, then z = 0. Moreover for any morphism $u = (u_1, u_2) : \phi \to \phi'$ $u_1 = (u_1^0, u_1^1), u_2 = (u_2^0, u_2^1)$. Here $u_1^0 \in \operatorname{Hom}_R(V_1, V'_1), u_2^0 \in \operatorname{Hom}_{eRe}(V_2, V'_2)$. Thus the pair (u_1^0, u_2^0) define a morphism of S-modules $z^0 : V \to V'$. In a similar way the pair of morphisms (u_1^1, u_2^1) define a morphism of S - S-bimodules $z^1 : \begin{pmatrix} W & 0 \\ 0 & eWe \end{pmatrix} \to \operatorname{Hom}_k(V, V')$. Thus we obtain a morphism $z = (z^0, z^1) : V \to V'$ in Rep \mathcal{B} such that F(z) = u.

Now if $z : V \to V'$ and $z' : V' \to V''$ are morphisms then F(z')F(z) = F(z'z). Clearly F sends identities into identities and F is a dense functor, this proves our claim.

6. Main Results

This section is devoted to the proofs of Theorem 1.1 and Theorem 1.2. In the following for P a projective Λ -module we denote by S(P) the complex with $S(P)^1 = P$ and $S(P)^i = 0$ for $i \neq 1$. For $h: P \to P'$ a morphism of Λ -modules we denote by $S(h): S(P) \to S(P')$ the morphism of complexes given by $S(h)^1 =$ $h, S(h)^i = 0$ for $i \neq 1$. For $n \geq 1$, we consider the following category \mathcal{M}_n of morphisms in $\mathbf{C_n^1}(\operatorname{Proj} \Lambda)$. The objects of \mathcal{M}_n are radical morphisms $f: S(P) \to X$ in $\mathbf{C_n^1}(\operatorname{Proj} \Lambda)$ with P a projective Λ -module and X any object in $\mathbf{C_n^1}(\operatorname{Proj} \Lambda)$. The morphisms from $f: S(P) \to X$ to $f': S(P') \to X'$ are given by pairs of morphisms $u = (u_1, u_2), u_1: P \to P', u_2: X \to X'$ such that $u_2f = f'S(u_1)$. If $u = (u_1, u_2)$ is a morphism from $f: S(P) \to X$ to $f': S(P') \to X'$ and $v = (v_1, v_2)$ is a morphism from $f': S(P') \to X'$ to $f'': S(P') \to X''$, then $vu = (v_1u_1, v_2u_2)$. The identity morphism in the object $f: S(P) \to X$ is given by the pair (id_P, id_X) .

Proposition 6.1. There is a functor $G : \mathcal{M}_n \to \mathbf{C_{n+1}^1}(\operatorname{Proj} \Lambda)$ which is an equivalence of categories.

Proof. Take $f: S(P) \to X$ an object in \mathcal{M}_n . We have the morphism $f^1: P \to X^1$, f is a radical morphism, thus $\mathrm{Im} f^1 \subset \mathrm{rad} X^1$, moreover f is a morphism of complexes, we have $d_X^1 f^1 = f^2 d_P^1 = 0$. Therefore we have the complex G(f) in $\mathbf{C_{n+1}^1}(\mathrm{Proj}\,\Lambda)$ given by $G(F)^i = 0$ for i outside the interval $[1, ..., n+1], G(f)^1 = P$, $G(f)^{i+1} = X^i$ for $i = 1, ..., n, d_{G(f)}^1 = f^1, d_{G(f)}^{i+1} = d_X^i$ for i = 1, ..., n. Now if $u = (u_1, u_2)$ is a morphism form $f: S(P) \to X$ to $f': S(P') \to X'$, we

Now if $u = (u_1, u_2)$ is a morphism from $f : S(P) \to X$ to $f' : S(P') \to X'$, we define G(u) in the following way: $G(u)^i = 0$ for *i* outside the interval [1, ..., n + 1], $G(u)^1 = u_1 : G(f)^1 = P \to G(f')^1 = P'$, $G(u)^{i+1} = u_2^i : G(f)^{i+1} = X^i \to G(f')^{i+1} = (X')^i$ for i = 1, ..., n. We have $d^1_{G(f)}G(u)^1 = (f')^1 u_1 = (u_2)^1 f' = G(u)^2 d^1_{G(f)}$. For i = 1, ..., n we have

We have $d_{G(f)}^1 G(u)^1 = (f')^1 u_1 = (u_2)^1 f' = G(u)^2 d_{G(f)}^1$. For i = 1, ..., n we have $d_{G(f')}^{i+1} G(u)^{i+1} = d_{X'}^i u_2^i = u_2^{i+1} d_X^i = G(u)^{i+2} d_{G(f)}^{i+1}$. From here we conclude that $G(u): G(f) \to G(f')$ is a morphism of complexes. We have $G(id_f) = id_{G(f)}$. Now if v is a morphism from $f': S(P') \to X'$ to $f'': S(P'') \to X'', G(v)G(u) = G(vu)$. Clearly G is a full, faithful dense functor.

Definition 6.2. Take $X \in \mathbf{C_n}(\operatorname{Proj} \Lambda)$. Then $E_X = \operatorname{End}_{\mathbf{C_n}(\operatorname{Proj} \Lambda)}(X)$ acts by the left on each X^i , we say that X has finite endolength if each X^i has finite length as E_X -left module. We define $\operatorname{endol}(X) = \sum_i \operatorname{length}_{E_X} X^i$.

Now suppose $P_1, ..., P_m$ is a representative system of the isomorphism classes of the indecomposable projective Λ -modules. For H a Λ -module we put $\underline{\dim}H = (\underline{\dim}_k \operatorname{Hom}(P_1, M), ..., \underline{\dim}_k \operatorname{Hom}(P_m, M)).$

For the category $\mathbf{C}_{\mathbf{n}}(\operatorname{proj} \Lambda)$ we consider $c(\mathbf{C}_{\mathbf{n}}(\operatorname{proj} \Lambda)) = \mathbb{Q}^{nm}$. For $X \in \mathbf{C}_{\mathbf{n}}(\operatorname{proj} \Lambda)$, we put $c(X) = (\underline{\dim} X_1/\operatorname{rad} X_1; ...; \underline{\dim} X_n/\operatorname{rad} X_n)$.

Let \mathcal{C} be a k-category and E a k-algebra, a $\mathcal{C} - E$ -object is an object $M \in \mathcal{C}$ endowed with a homomorphism of k-algebras $\alpha_M : E \to \operatorname{End}_{\mathcal{C}}(M)^{op}$. If M and N are $\mathcal{C} - E$ -objects, a morphism of $\mathcal{C} - E$ -objects from M to N is a morphism $f : M \to N$ in \mathcal{C} such that for all $r \in E$, $f\alpha_M(r) = \alpha_N(r)f$. If $F : \mathcal{C} \to \mathcal{D}$ is a functor and M is a $\mathcal{C} - E$ -object, then F(M) is a $\mathcal{D} - E$ -object, taking $\alpha_{F(M)}$ the composition $E \xrightarrow{\alpha_M} \operatorname{End}_{\mathcal{C}}(M)^{op} \xrightarrow{F} \operatorname{End}_{\mathcal{D}}(F(M))^{op}$. Clearly if $f : M \to N$ is a morphism of $\mathcal{C} - E$ -objects, $F(f) : F(M) \to F(N)$ is a morphism of $\mathcal{D} - E$ -objects.

Example 1

A $\mathbf{C_n}(\operatorname{Proj} \Lambda) - E$ -object is a complex $X \in \mathbf{C_n}(\operatorname{Proj} \Lambda)$ such that each X^i is a $\Lambda - E$ -bimodule and for all $i \in \mathbb{Z}$, d_X^i is a morphism of $\Lambda - E$ -bimodules. If X, Y are $\mathbf{C_n}(\operatorname{Proj} \Lambda) - E$ -objects, a morphism of complexes $f : X \to Y$ is a morphism of $\mathbf{C_n}(\operatorname{Proj} \Lambda) - E$ -objects if each $f^i : X^i \to Y^i$ is a morphism of $\Lambda - E$ -bimodules. **Example 2**

Let \mathcal{B} and \mathcal{C} be full subcategories of a category \mathcal{D} , consider \mathcal{M} the category of morphisms $f: X \to Y$ in \mathcal{D} with $X \in \mathcal{B}, Y \in \mathcal{C}$. Then $f: X \to Y$ is a $\mathcal{M}-E$ -object if f is a morphism of $\mathcal{D} - E$ -objects. Clearly $u = (u_1, u_2) : (f: X \to Y) \to (f': X' \to Y')$ is a morphism of $\mathcal{M} - E$ -objects if and only if u_1 and u_2 are morphisms of $\mathcal{D} - E$ -objects.

Example 3

Let $\mathcal{A} = (R, W, \delta)$ be a tbocs. We say that M is an $\mathcal{A} - E$ -bimodule if it is a Rep $\mathcal{A} - E$ -object. Then for $x \in E$ we have $\alpha_M(x) = (\alpha_M(x)^0, \alpha_M(x)^1)$. The $\mathcal{A} - E$ -bimodule M is said to be proper if for all $x \in E$, $\alpha_M(r)^1 = 0$. In this case M is an R - E-bimodule with $mx = \alpha_M(x)^0(m)$. Moreover for $a \in \mathcal{A}(\mathcal{A}), m \in M$, $(am)x = \alpha_M(x)^0(am) = a\alpha_M(x)^0(m) = a(mx)$, consequently M is a $\mathcal{A}(\mathcal{A}) - E$ bimodule. Clearly if M is a $\mathcal{A}(\mathcal{A}) - E$ -bimodule then M is a proper $\mathcal{A} - E$ -bimodule.

If $f = (f^0, f^1) : M \to N$ is a morphism in Rep \mathcal{A} with M and N proper $\mathcal{A} - E$ bimodules, then f is a morphism of $\mathcal{A} - E$ -bimodules if and only if f^0 is a morphism of R - E-bimodules and for all $v \in V(\mathcal{A}), f^1(v) : M \to N$ is a morphism of right E-modules.

Theorem 6.3. Assume $\mathbf{C}_{\mathbf{n}}^{\mathbf{1}}(\operatorname{proj} \Lambda)$ is not of wild representation type, then given a natural number d, there is a finite set of full and faithful functors $G_i : \operatorname{Rep}\mathcal{B}_i \to \mathbf{C}_{\mathbf{n}}^{\mathbf{1}}(\operatorname{Proj} \Lambda), i = 1, ..., t$, such that:

i) the thocses $\mathcal{B}_i = (R_i, W^i, \delta_i)$ are minimal triangular thocses;

ii) for i = 1, ..., t there are complexes $Y_i = (Y_i^j)$ with $Y_i^j \Lambda - R_i$ bimodules projectives on both sides and finitely generated over the right side with $F_i(N) \cong Y \otimes_{R_i} N$;

iii) for any $X \in \mathbf{C}^{\mathbf{1}}_{\mathbf{n}}(\operatorname{Proj} \Lambda)$ with $\operatorname{endol}(X) \leq d$ there is a $i \in \{1, ..., t\}$ and a $N \in \operatorname{Rep}\mathcal{B}_i$ with $F_i(N) \cong X$.

Proof. We prove our claim by induction on *n*. First we consider the case n = 1. Clearly $\mathbf{C}_1^1(\operatorname{Proj} \Lambda) \cong \operatorname{Proj} \Lambda$.

Take the thoos $\mathcal{U} = (\Lambda, 0, 0)$, then $\operatorname{Rep}\mathcal{U} = \operatorname{Mod}\Lambda$. Consider $X =_{\Lambda} \Lambda$, here $\operatorname{End}_{\Lambda}(X)^{op} \cong S \oplus \operatorname{rad}\Lambda$. We have the thoos $\mathcal{U}^X = (S, W, \delta)$, where $W_0 = 0, W_1 = (\operatorname{rad}\Lambda)^*$ and δ is the extension to $T_S(W)$, using Leibnitz rule, of the comultiplication $(\operatorname{rad}\Lambda)^* \to (\operatorname{rad}\Lambda)^* \otimes_S (\operatorname{rad}\Lambda)^*$. There is a full and faithful functor $F^X : \operatorname{Rep}\mathcal{U}^X \to \operatorname{Mod}\Lambda$. For $M \in \operatorname{Rep}\mathcal{U}^X$, $F^X(M) = \Lambda \otimes_S M$. The full and faithful functor F^X induces an equivalence $F^X : \operatorname{Rep}\mathcal{U}^X \to \operatorname{Proj}\Lambda \cong \mathbf{C}_1^1(\operatorname{Proj}\Lambda)$. Here \mathcal{U}^X is a minimal thoos, thus we have i), $X = \Lambda$ is a $\Lambda - S$ -bimodule projective fintely generated on both sides, thus we have ii), here $F^X : \operatorname{Rep}\mathcal{U}^X \to \operatorname{Proj}\Lambda$ is an equivalence and then we have iii).

Assume now our result proved for n, we will prove it for n + 1.

By the induction hypothesis for i = 1, ..., l there are full and faithful functors $F_i : \operatorname{Rep} \mathcal{A}_i \to \mathbf{C_n^1}(\operatorname{Proj} \Lambda)$ with $\mathcal{A} = (R_i, W^i, \delta_i)$ minimal thoeses and complexes Y_i of $\mathcal{A}(\mathcal{A}) - R_i$ -bimodules projectives finitely generated over the right side such that $Y_i^j = 0$ for j outside the interval [1, n] and $F_i(N) \cong Y_i \otimes_{R_i} N$. Moreover if $X \in \mathbf{C_n}(\operatorname{Proj} \Lambda)$ and $\operatorname{endol}(X) \leq d'$, there is a $N \in \operatorname{Rep} \mathcal{A}_i$ for some $i \in [1, l]$ with $F_i(N) \cong X$.

The functors F_i : Rep $\mathcal{A}_i \to \mathbf{C_n^1}(\operatorname{Proj} \Lambda)$ induce linear transformations t_{F_i} : $D(\mathcal{A}_i) \to \mathbb{Q}^{mn}$, such that for $N \in \operatorname{rep} \mathcal{A}_i$, $c(F_i(N)) = t_{F_i}(\underline{\dim}N)$.

Take P a projective indecomposable Λ -module and suppose $Z(P,i) \in \operatorname{Rep} \mathcal{A}$ is such that $F_i(Z(P,i)) \cong S(P)$. Then $t_{F_i}(\underline{\dim}Z(P,i)) = (\underline{\dim}P/\operatorname{rad}P; 0; ...; 0)$. Take $f_{i,j}$ the only primitive central idempotent of R_i such that $f_{i,j}Z(P,i) \neq 0$. Then if $R_i f_{i,j}$ is not k, there are infinitely many non-isomorphic indecomposable objects T_s in $\operatorname{Rep} \mathcal{A}_i$ such that $\underline{\dim} T_s = \underline{\dim} Z(P,i)$. But then applying F_i this implies that there are infinitely many non-isomorphic indecomposable objects $F_i(T_s)$ in $\operatorname{Rep} \mathcal{A}$ with $\underline{\dim} F_i(T_s) = (\underline{\dim} P; 0; ...; 0)$, which is not possible. Therefore $Rf_{i,j} = k$. Take now f_i the sum of all possible $f_{i,j}$ as before. Then $R_i f_i$ is a semisimple k-algebra.

Now for $i \in [1, t]$ take \mathcal{L}_i the category of radical morphisms $u : Z_2 \to Z_1$ in Rep \mathcal{A}_i with $f_i Z_2 = Z_2$. By Theorem 5.2 there is an equivalence of k-categories $G_i : \operatorname{Rep}\mathcal{B}_i \to \mathcal{L}_i$, with $\mathcal{B}_i = (S_i, W_{\mathcal{B}_i}, \delta_{\mathcal{B}_i})$ a triangular tbocs. Since \mathcal{A} is not of wild representation type then each $\mathcal{B}_i, i \in [1, t]$ is not of wild representation type. Then there are full and faithful functors $F_{i,j} : \operatorname{Rep}\mathcal{A}_{i,j} \to \operatorname{Rep}\mathcal{B}_i$ for $j \in [1, l(i)]$ with $\mathcal{A}_{i,j} = (S_{i,j}, W_{i,j}, \delta_{i,j})$ minimal triangular tbocses such that for all $M \in \operatorname{Rep}\mathcal{B}_i$ with $\operatorname{endol}(M) \leq d'$ there is a $N \in \operatorname{Rep}\mathcal{A}_{i,j}$ for some $j \in [1, l(j)]$ with $F_{i,j}(N) \cong M$.

The functor $F_i : \operatorname{Rep} \mathcal{A}_i \to \operatorname{Rep} \mathcal{A}$ induces a full and faithful functor $\hat{F}_i : \mathcal{L}_i \to \mathcal{M}_n$, $\hat{F}_i(u : Z_2 \to Z_1) = F_i(u) : F_i(Z_2) \to F_i(Z_1)$.

We have the following full and faithful functors:

$$\operatorname{Rep} \mathcal{B}_{i,j} \xrightarrow{F_{i,j}} \operatorname{Rep} \mathcal{B}_i \xrightarrow{G_i} \mathcal{L}_i \xrightarrow{F_i} \mathcal{M}_n \xrightarrow{G} \mathbf{C_{n+1}^1}(\operatorname{Proj} \Lambda).$$

We have the proper $\mathcal{B}_{i,j} - R_{i,j}$ -bimodule $F_{i,j}(R_{i,j}) = V_{i,j}$. Then $V_{i,j}$ is a $A(\mathcal{B}_{i,j}) - R_{i,j}$ -bimodule. We recall that

$$A(\mathcal{B}_i) = \left(\begin{array}{cc} R_i & W^i f_i \\ 0 & f_i R_i f_i \end{array}\right),$$

 $V_{i,j} = (V_{i,j}^1, V_{i,j}^2; h_{i,j})$ with $V_{i,j}^1$ and $V_{i,j}^2$ $R_i - R_{i,j}$ -bimodules finitely generated projectives over the right side. The morphism $h_{i,j} : W^i f_i \otimes_{R_i} V_{i,j}^2 \to V_{i,j}^1$ is a morphism of $R_i - R_{i,j}$ -bimodules. Then $V_{i,j}^1$ and $V_{i,j}^2$ are proper $\mathcal{A}_i - R_{i,j}$ -bimodules and $\phi_{i,j} = (0, \phi_{i,j}^1) : V_{i,j}^2 \to V_{i,j}^1$ with $\phi_{i,j}^1(w)(x) = h_{i,j}(w)(m)$ for $w \in W_1^i, x \in V_{i,j}^2$. Since $\phi_{i,j}$ is a morphism of $R_i - R_{i,j}$ -bimodules, $h_{i,j}$ is a morphism of $\mathcal{A}_i - R_{i,j}$ -bimodules.

By definition $G_i(V_{i,j}) = h_{i,j} : V_{i,j}^2 \to V_{i,j}^1, \hat{F}_i(G_i(V_{i,j})) = F_i(h_{i,j}) : Y_i \otimes_{R_i} V_{i,j}^2 \to Y_i \otimes_{R_i} V_{i,j}^1.$

 $Y_{i} \otimes_{R_{i}} V_{i,j}^{1}.$ Now $f_{i}V_{i,j}^{2} = V_{i,j}^{2}$, then $(Y_{i} \otimes_{R_{i}} V_{i,j}^{2})^{1} = Y_{i}^{1} \otimes_{R_{i}} V_{i,j}^{2}$ and $(Y_{i} \otimes_{R_{i,j}} V_{i,j})^{s} = 0$ for $s \neq 1$, $(Y_{i} \otimes_{R_{i}} V_{i,j}^{1})^{s} = Y_{i}^{s} \otimes_{R_{i}} V_{i,j}^{1}$ for $s \in \mathbb{Z}$, $F_{i}(h_{i,j})^{1} = u_{i,j}$, $F_{i}(h_{i,j})^{s} = 0$ for $s \neq 1$.

For $Z = G\hat{F}_iG_iF_{i,j}(R_{i,j})$ we have $Z^s = 0$ for s outside the interval [1, n+1], $Z^1 = Y_i^1 \otimes_{R_i} V_{i,j}^2$, $Z^2 = Y_i^1 \otimes_{R_i} V_{i,j}^1$, ..., $Z^{n+1} = Y_i^n \otimes_{R_i} V_{i,j}^1$; and $d_Z^1 = u_{i,j}$, $d_Z^s = d_{Y_i}^{s-1} \otimes 1$ for $s \in [2, n+1]$.

For $M \in \operatorname{Rep} \mathcal{B}_{i,j}$ we have $G\hat{F}_i G_i F_{i,j}(M) \cong Z \otimes_{R_{i,j}} M$.

We shall see that the functors $H_{i,j} = G\hat{F}_iG_iF_{i,j}$: Rep $\mathcal{B}_{i,j} \to \mathbf{C_{n+1}^1}(\operatorname{Proj}\Lambda)$ satisfy the conditions i), ii) and iii). Here the thors $\mathcal{B}_{i,j}$ is triangular minimal, thus we have i). Now for Z we have that for $s \in [1, n+1]$, Z^s is a $\Lambda - R_{i,j}$ bimodule projective on both sides and finitely generated over the right side and for $M \in \operatorname{Rep} \mathcal{B}_{i,j}, H_{i,j}(M) \cong Z \otimes_{R_{i,j}} M$, thus we have ii). For proving iii) take $X \in \mathbf{C}_{\mathbf{n}+1}^1(\operatorname{Proj} \Lambda)$ with $\operatorname{endol}(X) \leq d$. Then $X \cong G(X_2 \stackrel{u}{\to} X_1)$ with $X_2 = S(P), X_1 \in \mathbf{C}_{\mathbf{n}}^1(\operatorname{Proj} \Lambda)$. Consider $E = \operatorname{End}_{\mathbf{C}_{\mathbf{n}}(\operatorname{Proj} \Lambda)}(X)^{op}, X_1$ and X_2 are $\mathbf{C}_{\mathbf{n}}(\operatorname{Proj} \Lambda) - E$ -bimodules and $\operatorname{endol}(X) = \operatorname{length}_E X_1 + \operatorname{length}_E X_2$. Then $\operatorname{endol}(X_1) \leq \operatorname{length}_E X_1$ and $\operatorname{endol}(X_2) \leq \operatorname{length}_E X_2$. Therefore $\operatorname{endol}(X_1 \oplus X_2) \leq \operatorname{endol}(X_1) + \operatorname{endol}(X_2) \leq d$. Then there is an i and $N_1, N_2 \in \operatorname{Rep} \mathcal{A}_i$ such that $F_i(N_1) \cong X_1, F_i(N_2) \cong X_2$. Since F_i is a full functor, there is a morphism $v = (0, v^1) : N_1 \to N_2$ such that $F_i(v)$ is isomorphic to u. The morphism v is an object of \mathcal{L}_i . Clearly v is an $\mathcal{L}_i - E$ -bimodule with $\hat{F}_i(v) \cong u$. Since G_i is an equivalence there is a $N \in \mathcal{B}_i$ with $G_i(N) \cong v$. We may assume $N = (N_1, N_2; h)$, then $\operatorname{endol}(N) \leq \operatorname{endol}(N_1) + \operatorname{endol}(N_2) = \operatorname{endol}(X_1) + \operatorname{endol}(X_2) \leq d$. Then there is a j and an object $M \in \operatorname{Rep} \mathcal{B}_{i,j}$ with $F_{i,j}(M) \cong N$. Therefore $H_{i,j}(M) \cong X$, this proves iii). \Box

Proof of Theorem 1.1 Suppose $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ is not of wild representation type. Therefore $\mathbf{C}_{\mathbf{m}}^{\mathbf{1}}(\operatorname{proj} \Lambda)$ is not of wild representation type, consequently by Theorem 6.3, given a non negative integer d, there is a finite set of full and faithful functors $G_i : \operatorname{Rep} \mathcal{B}_i \to \mathbf{C}_{\mathbf{n}}^{\mathbf{1}}(\operatorname{Proj} \Lambda), \ i = 1, ..., t$ with conditions i), ii) and iii). Using the notation of Theorem 6.3, for $i \in \{1, ..., t\}$ we consider T_i the set of central primitive idempotents $f_{i,j}$ in R_i with $f_{i,j}R_i \neq kf_{i,j}$. For each $f_{i,j} \in T_i$ we have $Yf_{i,j} \in \mathbf{C}_{\mathbf{n}}^{\mathbf{1}}(\operatorname{Proj} \Lambda)$. Each $Y^u f_{i,j}$ is a $\Lambda - R_i f_{i,j}$ bimodule projective finitely generated as right $R_i f_{i,j}$ -module, since $R_i f_{i,j}$ is a rational k-algebra, then $Y^u f_{i,j}$ is a free finitely generated right $R_i f_{i,j}$ -module. Then for almost all isomorphism classes [X] of indecomposable objects in $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ with $\dim_k X \leq d$, we may assume $X \in \mathbf{C}_{\mathbf{m}}^{\mathbf{1}}(\operatorname{proj} \Lambda)$ and endol $(X) = \dim_k X \leq d$. Therefore for almost all such [X] we have $X \cong Y_i \otimes_{R_i f_{i,j}} S(\lambda)$ for some $\lambda \in k$ and $f_{i,j} \in T_i$. This proves that $\mathbf{C}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ is of tame representation type.

The following result implies Theorem 1.2.

Theorem 6.4. Assume that $\mathbf{C}_{\mathbf{m}}^{1}(\operatorname{proj} \Lambda)$ is not of wild representation type. Then given a natural number d for almost all indecomposable object $X \in \mathbf{C}_{\mathbf{m}}^{1}(\operatorname{proj} \Lambda)$ with $\dim_{k} X \leq d$ there is an \mathcal{E} -almost split sequence:

$$X \to E \to X.$$

Proof. We may assume X is not \mathcal{E} -projective then by Theorem 8.5 of [2], there is an \mathcal{E} -almost split sequence:

$$A(X) \to E \to X$$

in $\mathbf{C}_{\mathbf{m}}^{\mathbf{1}}(\operatorname{proj} \Lambda)$.

We will prove first that there is a constant $c(\Lambda)$ depending only on the algebra Λ such that for any $Y \in \mathbf{C}^{\mathbf{1}}_{\mathbf{m}}(\operatorname{proj} \Lambda)$, $\dim_k A(Y) \leq c(\Lambda)\dim_k Y$. Take $L = \dim_k \Lambda$, and the Nakayama functor ν : $\operatorname{proj} \Lambda \to \operatorname{inj} \Lambda$. We recall that if $1 = \sum_{i=1}^{n} e_i$ is a decomposition of the identity of Λ into orthogonal primitive idempotents then $\nu(\Lambda e_i) = D(e_i\Lambda)$. Therefore if $P = \bigoplus_i n_i \Lambda e_i$, then $\nu(P) = \bigoplus_i n_i D(e_i\Lambda)$. Thus $\dim_k \nu(P) = \sum_i n_i \dim_k D(e_i\Lambda) \leq \sum_i n_i L \leq L(\sum_i n_i \dim_k \Lambda e_i) = L \dim_k P$. If $W = (W^i, d^i_W)$ is a complex of finitely generated projective Λ - modules then $\nu(W) = (\nu(W^i), \nu(d^i_W))$. If in addition W is a finite complex $\dim_k \nu(W) = \sum_i \dim_k \nu(W^i) \leq L \dim_k W$.

Now choose a quasi-isomorphism $q: Z \to \tau^{\leq m}(\nu(X)[-1])$, with $Z = (Z^i, d_Z)$ such that $\operatorname{Im} d_Z^i \subset \operatorname{rad} Z^{i+1}$.

We have $\dim_k H^j(Z) = \dim_k H^j(\tau^{\leq m}X[-1]) \leq L\dim_k X$. Now $A(X) \cong F(Z)$ in $\mathbf{C}^1_{\mathbf{m}}(\operatorname{proj}\Lambda)$, thus $\dim_k A(X) \leq c(\Lambda)\dim_k X$ with $c(\Lambda) = L(mL + (m-1)L^2 + ...2L^{m-1} + L^m)$. This proves our claim.

Given a natural number d, we take $d' = 2(1 + c(\Lambda))d$. By Theorem 6.3 there is a finite number of full and faithful functors F_i : Rep $\mathcal{B}_i \to \mathbf{C_m^1}(\operatorname{Proj}\Lambda)$ with $\mathcal{B}_i = (R_i, W^i, \delta_i)$ minimal triangular theorems such that for any $Y \in \mathbf{C_m^1}(\operatorname{Proj}\Lambda)$ with endol $Y \leq d'$ there is a $W \in \operatorname{Rep} \mathcal{B}_i$ with $F_i(W) \cong Y$. Consider now the family \mathcal{S} of objects in $\mathbf{C_m^1}(\operatorname{proj}\Lambda)$ which are isomorphic to some $F_i(f_sR_i)$ with f_s central primitive idempotent of R_i such that $f_sR_i = k$. In the above family there is only a finite number of isomorphism classes.

Take now an indecomposable object $X \in \mathbf{C}^{\mathbf{1}}_{\mathbf{m}}(\operatorname{proj} \Lambda)$ which is not in \mathcal{S} with $\dim_k X \leq d$. Suppose moreover that X is not \mathcal{E} -projective. Then there is an \mathcal{E} -almost split sequence:

$$a \quad Y \to E \to X,$$

here $\operatorname{endol}(X \oplus E \oplus Y) \leq \dim_k (X \oplus E \oplus Y) \leq d'$, then there is a $U \in \operatorname{Rep} \mathcal{B}_i$ with $F_i(U) \cong (X \oplus E \oplus Y)$. Therefore there are objects N, M, W in $\operatorname{Rep} \mathcal{B}_i$ with $F_i(M) \cong X, F_i(N) \cong Y, F_i(W) \cong E$. Since F_i is full and faithful, thus there is an almost split sequence $N \to W \to M$ whose image is isomorphic to a. Here M is not isomorphic to some $f_s R_i$ with f_s central primitive idempotent of R_i such that $f_s R_i = k$ thus $N \cong M$ which implies that $X \cong Y$. \Box

7. Generic Complexes

Here we consider generic complexes in the sense of section 5 of [16]. For Λ a derived tame algebra we shall see the relations between one-parameter families of objects in $\mathcal{D}^b(\Lambda)$ and generic complexes in $\mathcal{D}^b(\operatorname{Mod} \Lambda)$.

Definition 7.1. A complex $X \in \mathcal{D}^b(\operatorname{Mod} \Lambda)$ is called endofinite if $H^i(X)$ has finite length as $E(X) = \operatorname{End}_{\mathcal{D}^b(\operatorname{Mod} \Lambda)}(X)$ -module for all $i \in \mathbb{Z}$.

An endofinite complex X is called generic if it is indecomposable and it is not isomorphic to a bounded complex of finitely presented Λ -modules.

The homology endolength of an endofinite X object of $\mathcal{D}^b(\operatorname{Mod} \Lambda)$ is defined as:

$$\mathbf{h}$$
endol $X = (\text{length}_{E(X)} H^i(X))_{i \in \mathbb{Z}}.$

Definition 7.2. An infinite family \mathcal{F} of pairwise non-isomorphic indecomposable objects in $\mathcal{D}^b(\Lambda)$, (respectively in $\mathbf{C_n}(\mod \Lambda)$) is called one-parameter family if there is a rational k-algebra R and a bounded complex X of $\Lambda - R$ -bimodules (respectively X a $\mathbf{C_n}(\operatorname{Proj} \Lambda) - R$ -bimodule) with each X^i is free finitely generated over R, such for any $M \in \mathcal{F}$, there is a $\lambda \in S(R)$ with $M \cong X \otimes_R k[x]/(x - \lambda)$. We say that \mathcal{F} is parametrized by Y.

If \mathcal{F}_1 and \mathcal{F}_2 are two one-parameter families of complexes in $\mathbf{C}_n(\mod \Lambda)$ the set $\mathcal{F}_{1,2}$ of those $X \in \mathcal{F}_1$ such that there is a $Y \in \mathcal{F}_2$ with $X \cong Y$ is either finite or cofinite in \mathcal{F}_1 . The relation between the one-parameter families defined by $\mathcal{F}_1 \approx \mathcal{F}_2$ if the set $\mathcal{F}_{1,2}$ is infinite is an equivalence relation. We say that \mathcal{F}_1 is equivalent to \mathcal{F}_2 if $\mathcal{F}_{1,2}$ is infinite.

Definition 7.3. If X is a bonded complex of $\Lambda - k(x)$ -bimodules a realization of X is a bounded complex Y of $\Lambda - R$ -bimodules, with R a rational k-algebra such that $X \cong Y \otimes_R k(x)$ in the category $\mathcal{D}^b(\operatorname{Mod} \Lambda)$.

24

Theorem 7.4. Let Λ be a derived tame k-algebra, with k algebraically closed field, suppose X is a generic complex in $\mathcal{D}^b(\operatorname{Mod} \Lambda)$. Then:

i) X is isomorphic to P a bounded complex of finitely generated $\Lambda - k(x)$ -bimodules, moreover \mathbf{h} endol $X = (\dim_{k(x)} H^i(P));$

ii) there is a rational k-algebra R and a complex Y of $\Lambda - R$ -bimodules free finitely generated over the rigth side such that $Y \otimes_R k(x) \cong X$ in $\mathcal{D}^b(\operatorname{Mod} \Lambda)$ and $Y \otimes_R - :$ mod $R \to \mathcal{D}^b(\operatorname{mod} \Lambda)$ preserves indecomposables and isomorphism classes.

Moreover, if \mathcal{F} is a one-parameter family of indecomposable objects in $\mathcal{D}^b(\text{mod }\Lambda)$, then there is a generic complex $X \in \mathcal{D}^b(\text{Mod }\Lambda)$ and a realization Y of X such that \mathcal{F} is equivalent to a one-parameter family parametrized by $Y \otimes_R R/(p)^n$ with p a prime element in R.

Proof. We may assume that for $(h_i) = \mathbf{h}$ endol X^{\bullet} we have $h_i = 0$ for $i \leq 2$ and i > m, $h_2 \neq 0$. Take now $P \in \mathbf{K}^{\leq \mathbf{m}, \mathbf{b}}(\operatorname{Proj} \Lambda)$ quasi-isomorphic to X. Then $H^i(P) = 0$ for $i \leq 2$. We have F(P) is indecomposable in $\mathbf{C}^1_{\mathbf{m}}(\operatorname{Proj} \Lambda)$, with F the functor given after Lemma 2.2. Now $F(P) = Q = (Q^i, d_Q^i)$ is a complex such that each Q^i has finite length as $\operatorname{End}_Q(Q)$ -module, then Q has endofinite length d. Since we have an equivalence $F : \mathcal{L}_m \to \overline{\mathbf{C}_m}(\operatorname{Mod} \Lambda)$, Q is a generic object. By Theorem 6.3 there is a full and faithful functor $G : \operatorname{Rep} \mathcal{B} \to \mathbf{C}^1_{\mathbf{n}}(\operatorname{Proj} \Lambda)$ with $\mathcal{B} = (S, W, \delta)$ a minimal triangular theorem and $G(M) \cong Q$ for some $M \in \operatorname{Rep} \mathcal{B}$. Thus M is a generic object in $\operatorname{Rep} \mathcal{B}$, then there is a central primitive idempotent $f \in S$ such that M = k(x)f.

By ii) of Theorem 6.3 there is a complex Z of $\Lambda - S$ -bimodules projectives on both sides and finitely generated over the right side such that for all $N \in \operatorname{Rep} \mathcal{B}$, $F(N) \cong Z \otimes_S N$, thus $Q \cong Z \otimes_S fk(x) \cong Zf \otimes_{fSf} k(x)$. Here R = fSf is a rational k-algebra and Y = Zf is complex of projective right R-module then Y is a complex of free finitely generated right R-modules. Our complex Y satisfies the hypothesis of Corollary 2.7, therefore since $Q \cong Y \otimes_R k(x)$, the morphism $d_Q^1 : Q^1 \to Q^2$ is a monomorphism. But $d_P^1 : P^1 \to P^2 = d_Q^1 : Q^1 \to Q^2$, then d_P^1 is a monomorphism. But $H^1(P) = 0$, then $d_P^0 = 0$, but this implies that $P^j = 0$ for $j \leq 0$, consequently P = Q. We have that the radical of $\operatorname{End}_{\mathcal{B}}(M)$ is nilpotent and $\operatorname{End}_{\mathcal{B}}(M)/\operatorname{radEnd}_{\mathcal{B}}(M) \cong k(x)$, thus for $E_P = \operatorname{End}_{\operatorname{Cm}(\operatorname{Proj} \Lambda)}(P)$ we have $E_P/\operatorname{rad} E_P \cong k(x)$. From this we obtain i). Since G is a full and faithful functor, we obtain ii).

For the last statement of our theorem suppose that \mathcal{F} is a one-parameter family in $\mathcal{D}^b(\Lambda)$. We may assume that there is a fixed $\mathbf{h} = (h_i)$ such that for all $X \in \mathcal{F}$, $\mathbf{h}\dim X = \mathbf{h}$. By Theorem 2.4 we may assume that all $X \in \mathbf{C}^1_{\mathbf{m}}(\operatorname{proj} \Lambda)$ and there is a fixed d such that $\operatorname{endol} X \leq d$. By Theorem 6.3 there are full and faithful functors $G_i : \operatorname{Rep} \mathcal{B}_i \to \mathbf{C}^1_{\mathbf{m}}(\operatorname{proj} \Lambda)$ with $\mathcal{B}_i = (R_i, W_i, \delta_i)$ minimal tbocses such that for all $X \in \mathcal{F}$ there is a $N \in \operatorname{Rep} \mathcal{B}_i$ with $F_i(N) \cong X$. Moreover there are complexes Y_i such that for $M \in \operatorname{Rep} \mathcal{B}_i$, $G_i(M) \cong Y_i \otimes_{R_i} M$. In $\mathbf{C}^1_{\mathbf{m}}(\operatorname{proj} \Lambda)$ there are one-parameter families parametrized by the complexes $Y_i f_{i,j} R_i/(p)^n$ with pprime element of $R_i f_{i,j}$ and $f_{i,j}$ central primitive idempotents of R_i with $R_i f_{i,j} \neq$ $kf_{i,j}$. Almost all objects in \mathcal{F} are in one of these one-parameter families, then \mathcal{F} is equivalent with one of these families. This proves our result.

References

- R. Bautista, J. Boza, E. Pérez. Reduction Functors and Exact Structures for Bocses. Bol. Soc. Mat. Mexicana 3 Vol. 9, 2003 21- 60.
- [2] R. Bautista, M.J. Souto Salorio and R. Zuazua. Almost Split Conflations for complexes with fixed size. Preprint (2004)
- [3] R. Bautista and Y. Zhang. Representations of a k-algebra over the rational functions over k. Journal of Algebra 267(2003)342-358
- [4] R. Bautista and R. Zuazua. One-Parameter Families of Modules, for Tame Algebras and Bocses. To appear in Algebras and Representation Theory. (2005)
- [5] V. Bekkert and Y.A. Drozd. Tame-Wild dichotomy for derived categories. arXiv:math.RT/03/0352.
- [6] V. Bekkert and H. Merklen. Indecomposables in Derived Categories of Gentle Algebras. Algebras and Representation Theory 6 2003, 285-302.
- [7] Crawley-Boevey, W.W. On tame algebras and bocses. Proc. London Math. Soc. 1986 56(3), 451-483.
- [8] W.W. Crawley-Boevey. Tame algebras and generic modules. Proc. London Math. Soc. 63 (1991) 241-265.
- [9] W.W. Crawley-Boevey. Modules of Finite Length over their Endomorphism Rings. London Math. Soc. Lec. Notes Series 168, Cambridge University Press, 1992, 127-184
- [10] Y.A. Drozd. Derived Tame and Derived Wild Algebras. arXiv:math.RT /0310171.
- [11] P. Gabriel, A. V. Roiter. Representations of finite dimensional algebras. Encyclopaedia of the Mathematical Sciences. 73, A.I. Kostrikin and I. V. Shafarevich (Eds.), Algebra VIII, Springer, (1992).
- [12] Ch. Geiss and H. Krause. On the notion of derived tameness. Journal of Algebra and its Appl. 1 (2002) 133-158.
- [13] Ch. Geiss and I. Reiten. Gentle Algebras are Gorenstien. Preprint. (2003)
- [14] D. Happel. Auslander-Reiten triangles in Derived Categories of Finite-Dimensional Algebras. Proceedings of the American Mathematical Society, Vol. 112, no. 3 (1991) 641-648.
- [15] H. Krause. Stable equivalence preserves representation type. Comment. Math. Helv. 72 (1997) 266-284.
- [16] H. Krause. A duality between Complexes of right and left modules. *Representations of Algebras* Vol I. Proceedings of the Ninth International Conference Beijing, August 21-September 1, 2000. Edited by D. Happel and Y.B. Zhang. Beijing Normal University Press. (2000) 87-96.
- [17] D. Quillen. Higher Algebraic K-Theory I, SLNM 341, Springer, Berlin (1973) 85-147.
- [18] D. Vossieck. The Algebras with Discrete Derived Category. Journal of Algebra 243 (2001), 168-176.

Instituto de Matemáticas, UNAM, Unidad Morelia, A.P. 61-3, Xangari, C.P. 58089, Morelia, Michoacán, México. E-mail: raymundo@matmor.unam.mx